{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Problem 1: Healthy Breakfast revisited\n",
"In this exercise we will do some simple analyses on a data set that contains information about 77 types of breakfast cereal. You can read about the data set at [CMU's website](http://lib.stat.cmu.edu/DASL/Stories/HealthyBreakfast.html). Download the files [cereal.csv](https://ucl-cs-grad.github.io/scipython/notebooks/day4/cereal.txt) from the course website. \n",
"\n",
"Today you will be using pandas to read the data and do the analysis!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.1 Import the data using pandas"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"col_labels = [\"name\", \"mfr\", \"type\", \"calories (number)\", \"protein (g)\", \"fat (g)\", \"sodium (mg)\", \n",
" \"dietary fiber (g)\", \"complex carbohydrates (g)\", \"sugars (g)\", \n",
" \"shelf\", \"potassium (mg)\", \n",
" \"vitamins and minerals\", \n",
" \"weight (in ounces) of one serving (serving size)\", \"cups per serving\"]\n",
"\n",
"df = pd.read_csv('cereal.txt', sep=' ', header=None, names=col_labels)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" mfr | \n",
" type | \n",
" calories (number) | \n",
" protein (g) | \n",
" fat (g) | \n",
" sodium (mg) | \n",
" dietary fiber (g) | \n",
" complex carbohydrates (g) | \n",
" sugars (g) | \n",
" shelf | \n",
" potassium (mg) | \n",
" vitamins and minerals | \n",
" weight (in ounces) of one serving (serving size) | \n",
" cups per serving | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 100%_Bran | \n",
" N | \n",
" C | \n",
" 70 | \n",
" 4 | \n",
" 1 | \n",
" 130 | \n",
" 10.0 | \n",
" 5.0 | \n",
" 6 | \n",
" 3 | \n",
" 280 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.33 | \n",
"
\n",
" \n",
" 1 | \n",
" 100%_Natural_Bran | \n",
" Q | \n",
" C | \n",
" 120 | \n",
" 3 | \n",
" 5 | \n",
" 15 | \n",
" 2.0 | \n",
" 8.0 | \n",
" 8 | \n",
" 3 | \n",
" 135 | \n",
" 0 | \n",
" 1.00 | \n",
" -1.00 | \n",
"
\n",
" \n",
" 2 | \n",
" All-Bran | \n",
" K | \n",
" C | \n",
" 70 | \n",
" 4 | \n",
" 1 | \n",
" 260 | \n",
" 9.0 | \n",
" 7.0 | \n",
" 5 | \n",
" 3 | \n",
" 320 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.33 | \n",
"
\n",
" \n",
" 3 | \n",
" All-Bran_with_Extra_Fiber | \n",
" K | \n",
" C | \n",
" 50 | \n",
" 4 | \n",
" 0 | \n",
" 140 | \n",
" 14.0 | \n",
" 8.0 | \n",
" 0 | \n",
" 3 | \n",
" 330 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 4 | \n",
" Almond_Delight | \n",
" R | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 2 | \n",
" 200 | \n",
" 1.0 | \n",
" 14.0 | \n",
" 8 | \n",
" 3 | \n",
" -1 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 5 | \n",
" Apple_Cinnamon_Cheerios | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 2 | \n",
" 180 | \n",
" 1.5 | \n",
" 10.5 | \n",
" 10 | \n",
" 1 | \n",
" 70 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 6 | \n",
" Apple_Jacks | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 0 | \n",
" 125 | \n",
" 1.0 | \n",
" 11.0 | \n",
" 14 | \n",
" 2 | \n",
" 30 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 7 | \n",
" Basic_4 | \n",
" G | \n",
" C | \n",
" 130 | \n",
" 3 | \n",
" 2 | \n",
" 210 | \n",
" 2.0 | \n",
" 18.0 | \n",
" 8 | \n",
" 3 | \n",
" 100 | \n",
" 25 | \n",
" 1.33 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 8 | \n",
" Bran_Chex | \n",
" R | \n",
" C | \n",
" 90 | \n",
" 2 | \n",
" 1 | \n",
" 200 | \n",
" 4.0 | \n",
" 15.0 | \n",
" 6 | \n",
" 1 | \n",
" 125 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 9 | \n",
" Bran_Flakes | \n",
" P | \n",
" C | \n",
" 90 | \n",
" 3 | \n",
" 0 | \n",
" 210 | \n",
" 5.0 | \n",
" 13.0 | \n",
" 5 | \n",
" 3 | \n",
" 190 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 10 | \n",
" Cap'n'Crunch | \n",
" Q | \n",
" C | \n",
" 120 | \n",
" 1 | \n",
" 2 | \n",
" 220 | \n",
" 0.0 | \n",
" 12.0 | \n",
" 12 | \n",
" 2 | \n",
" 35 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 11 | \n",
" Cheerios | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 6 | \n",
" 2 | \n",
" 290 | \n",
" 2.0 | \n",
" 17.0 | \n",
" 1 | \n",
" 1 | \n",
" 105 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.25 | \n",
"
\n",
" \n",
" 12 | \n",
" Cinnamon_Toast_Crunch | \n",
" G | \n",
" C | \n",
" 120 | \n",
" 1 | \n",
" 3 | \n",
" 210 | \n",
" 0.0 | \n",
" 13.0 | \n",
" 9 | \n",
" 2 | \n",
" 45 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 13 | \n",
" Clusters | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 3 | \n",
" 2 | \n",
" 140 | \n",
" 2.0 | \n",
" 13.0 | \n",
" 7 | \n",
" 3 | \n",
" 105 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 14 | \n",
" Cocoa_Puffs | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 1 | \n",
" 180 | \n",
" 0.0 | \n",
" 12.0 | \n",
" 13 | \n",
" 2 | \n",
" 55 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 15 | \n",
" Corn_Chex | \n",
" R | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 0 | \n",
" 280 | \n",
" 0.0 | \n",
" 22.0 | \n",
" 3 | \n",
" 1 | \n",
" 25 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 16 | \n",
" Corn_Flakes | \n",
" K | \n",
" C | \n",
" 100 | \n",
" 2 | \n",
" 0 | \n",
" 290 | \n",
" 1.0 | \n",
" 21.0 | \n",
" 2 | \n",
" 1 | \n",
" 35 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 17 | \n",
" Corn_Pops | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 0 | \n",
" 90 | \n",
" 1.0 | \n",
" 13.0 | \n",
" 12 | \n",
" 2 | \n",
" 20 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 18 | \n",
" Count_Chocula | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 1 | \n",
" 180 | \n",
" 0.0 | \n",
" 12.0 | \n",
" 13 | \n",
" 2 | \n",
" 65 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 19 | \n",
" Cracklin'_Oat_Bran | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 3 | \n",
" 3 | \n",
" 140 | \n",
" 4.0 | \n",
" 10.0 | \n",
" 7 | \n",
" 3 | \n",
" 160 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 20 | \n",
" Cream_of_Wheat_(Quick) | \n",
" N | \n",
" H | \n",
" 100 | \n",
" 3 | \n",
" 0 | \n",
" 80 | \n",
" 1.0 | \n",
" 21.0 | \n",
" 0 | \n",
" 2 | \n",
" -1 | \n",
" 0 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 21 | \n",
" Crispix | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 0 | \n",
" 220 | \n",
" 1.0 | \n",
" 21.0 | \n",
" 3 | \n",
" 3 | \n",
" 30 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 22 | \n",
" Crispy_Wheat_&_Raisins | \n",
" G | \n",
" C | \n",
" 100 | \n",
" 2 | \n",
" 1 | \n",
" 140 | \n",
" 2.0 | \n",
" 11.0 | \n",
" 10 | \n",
" 3 | \n",
" 120 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 23 | \n",
" Double_Chex | \n",
" R | \n",
" C | \n",
" 100 | \n",
" 2 | \n",
" 0 | \n",
" 190 | \n",
" 1.0 | \n",
" 18.0 | \n",
" 5 | \n",
" 3 | \n",
" 80 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 24 | \n",
" Froot_Loops | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 1 | \n",
" 125 | \n",
" 1.0 | \n",
" 11.0 | \n",
" 13 | \n",
" 2 | \n",
" 30 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 25 | \n",
" Frosted_Flakes | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 0 | \n",
" 200 | \n",
" 1.0 | \n",
" 14.0 | \n",
" 11 | \n",
" 1 | \n",
" 25 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 26 | \n",
" Frosted_Mini-Wheats | \n",
" K | \n",
" C | \n",
" 100 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 3.0 | \n",
" 14.0 | \n",
" 7 | \n",
" 2 | \n",
" 100 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.80 | \n",
"
\n",
" \n",
" 27 | \n",
" Fruit_&_Fibre_Dates,_Walnuts,_and_Oats | \n",
" P | \n",
" C | \n",
" 120 | \n",
" 3 | \n",
" 2 | \n",
" 160 | \n",
" 5.0 | \n",
" 12.0 | \n",
" 10 | \n",
" 3 | \n",
" 200 | \n",
" 25 | \n",
" 1.25 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 28 | \n",
" Fruitful_Bran | \n",
" K | \n",
" C | \n",
" 120 | \n",
" 3 | \n",
" 0 | \n",
" 240 | \n",
" 5.0 | \n",
" 14.0 | \n",
" 12 | \n",
" 3 | \n",
" 190 | \n",
" 25 | \n",
" 1.33 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 29 | \n",
" Fruity_Pebbles | \n",
" P | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 1 | \n",
" 135 | \n",
" 0.0 | \n",
" 13.0 | \n",
" 12 | \n",
" 2 | \n",
" 25 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 47 | \n",
" Multi-Grain_Cheerios | \n",
" G | \n",
" C | \n",
" 100 | \n",
" 2 | \n",
" 1 | \n",
" 220 | \n",
" 2.0 | \n",
" 15.0 | \n",
" 6 | \n",
" 1 | \n",
" 90 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 48 | \n",
" Nut&Honey_Crunch | \n",
" K | \n",
" C | \n",
" 120 | \n",
" 2 | \n",
" 1 | \n",
" 190 | \n",
" 0.0 | \n",
" 15.0 | \n",
" 9 | \n",
" 2 | \n",
" 40 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 49 | \n",
" Nutri-Grain_Almond-Raisin | \n",
" K | \n",
" C | \n",
" 140 | \n",
" 3 | \n",
" 2 | \n",
" 220 | \n",
" 3.0 | \n",
" 21.0 | \n",
" 7 | \n",
" 3 | \n",
" 130 | \n",
" 25 | \n",
" 1.33 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 50 | \n",
" Nutri-grain_Wheat | \n",
" K | \n",
" C | \n",
" 90 | \n",
" 3 | \n",
" 0 | \n",
" 170 | \n",
" 3.0 | \n",
" 18.0 | \n",
" 2 | \n",
" 3 | \n",
" 90 | \n",
" 25 | \n",
" 1.00 | \n",
" -1.00 | \n",
"
\n",
" \n",
" 51 | \n",
" Oatmeal_Raisin_Crisp | \n",
" G | \n",
" C | \n",
" 130 | \n",
" 3 | \n",
" 2 | \n",
" 170 | \n",
" 1.5 | \n",
" 13.5 | \n",
" 10 | \n",
" 3 | \n",
" 120 | \n",
" 25 | \n",
" 1.25 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 52 | \n",
" Post_Nat._Raisin_Bran | \n",
" P | \n",
" C | \n",
" 120 | \n",
" 3 | \n",
" 1 | \n",
" 200 | \n",
" 6.0 | \n",
" 11.0 | \n",
" 14 | \n",
" 3 | \n",
" 260 | \n",
" 25 | \n",
" 1.33 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 53 | \n",
" Product_19 | \n",
" K | \n",
" C | \n",
" 100 | \n",
" 3 | \n",
" 0 | \n",
" 320 | \n",
" 1.0 | \n",
" 20.0 | \n",
" 3 | \n",
" 3 | \n",
" 45 | \n",
" 100 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 54 | \n",
" Puffed_Rice | \n",
" Q | \n",
" C | \n",
" 50 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0.0 | \n",
" 13.0 | \n",
" 0 | \n",
" 3 | \n",
" 15 | \n",
" 0 | \n",
" 0.50 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 55 | \n",
" Puffed_Wheat | \n",
" Q | \n",
" C | \n",
" 50 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 1.0 | \n",
" 10.0 | \n",
" 0 | \n",
" 3 | \n",
" 50 | \n",
" 0 | \n",
" 0.50 | \n",
" -1.00 | \n",
"
\n",
" \n",
" 56 | \n",
" Quaker_Oat_Squares | \n",
" Q | \n",
" C | \n",
" 100 | \n",
" 4 | \n",
" 1 | \n",
" 135 | \n",
" 2.0 | \n",
" 14.0 | \n",
" 6 | \n",
" 3 | \n",
" 110 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 57 | \n",
" Quaker_Oatmeal | \n",
" Q | \n",
" H | \n",
" 100 | \n",
" 5 | \n",
" 2 | \n",
" 0 | \n",
" 2.7 | \n",
" -1.0 | \n",
" -1 | \n",
" 1 | \n",
" 110 | \n",
" 0 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 58 | \n",
" Raisin_Bran | \n",
" K | \n",
" C | \n",
" 120 | \n",
" 3 | \n",
" 1 | \n",
" 210 | \n",
" 5.0 | \n",
" 14.0 | \n",
" 12 | \n",
" 2 | \n",
" 240 | \n",
" 25 | \n",
" 1.33 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 59 | \n",
" Raisin_Nut_Bran | \n",
" G | \n",
" C | \n",
" 100 | \n",
" 3 | \n",
" 2 | \n",
" 140 | \n",
" 2.5 | \n",
" 10.5 | \n",
" 8 | \n",
" 3 | \n",
" 140 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 60 | \n",
" Raisin_Squares | \n",
" K | \n",
" C | \n",
" 90 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 2.0 | \n",
" 15.0 | \n",
" 6 | \n",
" 3 | \n",
" 110 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.50 | \n",
"
\n",
" \n",
" 61 | \n",
" Rice_Chex | \n",
" R | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 0 | \n",
" 240 | \n",
" 0.0 | \n",
" 23.0 | \n",
" 2 | \n",
" 1 | \n",
" 30 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.13 | \n",
"
\n",
" \n",
" 62 | \n",
" Rice_Krispies | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 0 | \n",
" 290 | \n",
" 0.0 | \n",
" 22.0 | \n",
" 3 | \n",
" 1 | \n",
" 35 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 63 | \n",
" Shredded_Wheat | \n",
" N | \n",
" C | \n",
" 80 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 3.0 | \n",
" 16.0 | \n",
" 0 | \n",
" 1 | \n",
" 95 | \n",
" 0 | \n",
" 0.83 | \n",
" -1.00 | \n",
"
\n",
" \n",
" 64 | \n",
" Shredded_Wheat_'n'Bran | \n",
" N | \n",
" C | \n",
" 90 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 4.0 | \n",
" 19.0 | \n",
" 0 | \n",
" 1 | \n",
" 140 | \n",
" 0 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 65 | \n",
" Shredded_Wheat_spoon_size | \n",
" N | \n",
" C | \n",
" 90 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 3.0 | \n",
" 20.0 | \n",
" 0 | \n",
" 1 | \n",
" 120 | \n",
" 0 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 66 | \n",
" Smacks | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 1 | \n",
" 70 | \n",
" 1.0 | \n",
" 9.0 | \n",
" 15 | \n",
" 2 | \n",
" 40 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 67 | \n",
" Special_K | \n",
" K | \n",
" C | \n",
" 110 | \n",
" 6 | \n",
" 0 | \n",
" 230 | \n",
" 1.0 | \n",
" 16.0 | \n",
" 3 | \n",
" 1 | \n",
" 55 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 68 | \n",
" Strawberry_Fruit_Wheats | \n",
" N | \n",
" C | \n",
" 90 | \n",
" 2 | \n",
" 0 | \n",
" 15 | \n",
" 3.0 | \n",
" 15.0 | \n",
" 5 | \n",
" 2 | \n",
" 90 | \n",
" 25 | \n",
" 1.00 | \n",
" -1.00 | \n",
"
\n",
" \n",
" 69 | \n",
" Total_Corn_Flakes | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 1 | \n",
" 200 | \n",
" 0.0 | \n",
" 21.0 | \n",
" 3 | \n",
" 3 | \n",
" 35 | \n",
" 100 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 70 | \n",
" Total_Raisin_Bran | \n",
" G | \n",
" C | \n",
" 140 | \n",
" 3 | \n",
" 1 | \n",
" 190 | \n",
" 4.0 | \n",
" 15.0 | \n",
" 14 | \n",
" 3 | \n",
" 230 | \n",
" 100 | \n",
" 1.50 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 71 | \n",
" Total_Whole_Grain | \n",
" G | \n",
" C | \n",
" 100 | \n",
" 3 | \n",
" 1 | \n",
" 200 | \n",
" 3.0 | \n",
" 16.0 | \n",
" 3 | \n",
" 3 | \n",
" 110 | \n",
" 100 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 72 | \n",
" Triples | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 1 | \n",
" 250 | \n",
" 0.0 | \n",
" 21.0 | \n",
" 3 | \n",
" 3 | \n",
" 60 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
" 73 | \n",
" Trix | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 1 | \n",
" 1 | \n",
" 140 | \n",
" 0.0 | \n",
" 13.0 | \n",
" 12 | \n",
" 2 | \n",
" 25 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 74 | \n",
" Wheat_Chex | \n",
" R | \n",
" C | \n",
" 100 | \n",
" 3 | \n",
" 1 | \n",
" 230 | \n",
" 3.0 | \n",
" 17.0 | \n",
" 3 | \n",
" 1 | \n",
" 115 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.67 | \n",
"
\n",
" \n",
" 75 | \n",
" Wheaties | \n",
" G | \n",
" C | \n",
" 100 | \n",
" 3 | \n",
" 1 | \n",
" 200 | \n",
" 3.0 | \n",
" 17.0 | \n",
" 3 | \n",
" 1 | \n",
" 110 | \n",
" 25 | \n",
" 1.00 | \n",
" 1.00 | \n",
"
\n",
" \n",
" 76 | \n",
" Wheaties_Honey_Gold | \n",
" G | \n",
" C | \n",
" 110 | \n",
" 2 | \n",
" 1 | \n",
" 200 | \n",
" 1.0 | \n",
" 16.0 | \n",
" 8 | \n",
" 1 | \n",
" 60 | \n",
" 25 | \n",
" 1.00 | \n",
" 0.75 | \n",
"
\n",
" \n",
"
\n",
"
77 rows × 15 columns
\n",
"
"
],
"text/plain": [
" name mfr type calories (number) \\\n",
"0 100%_Bran N C 70 \n",
"1 100%_Natural_Bran Q C 120 \n",
"2 All-Bran K C 70 \n",
"3 All-Bran_with_Extra_Fiber K C 50 \n",
"4 Almond_Delight R C 110 \n",
"5 Apple_Cinnamon_Cheerios G C 110 \n",
"6 Apple_Jacks K C 110 \n",
"7 Basic_4 G C 130 \n",
"8 Bran_Chex R C 90 \n",
"9 Bran_Flakes P C 90 \n",
"10 Cap'n'Crunch Q C 120 \n",
"11 Cheerios G C 110 \n",
"12 Cinnamon_Toast_Crunch G C 120 \n",
"13 Clusters G C 110 \n",
"14 Cocoa_Puffs G C 110 \n",
"15 Corn_Chex R C 110 \n",
"16 Corn_Flakes K C 100 \n",
"17 Corn_Pops K C 110 \n",
"18 Count_Chocula G C 110 \n",
"19 Cracklin'_Oat_Bran K C 110 \n",
"20 Cream_of_Wheat_(Quick) N H 100 \n",
"21 Crispix K C 110 \n",
"22 Crispy_Wheat_&_Raisins G C 100 \n",
"23 Double_Chex R C 100 \n",
"24 Froot_Loops K C 110 \n",
"25 Frosted_Flakes K C 110 \n",
"26 Frosted_Mini-Wheats K C 100 \n",
"27 Fruit_&_Fibre_Dates,_Walnuts,_and_Oats P C 120 \n",
"28 Fruitful_Bran K C 120 \n",
"29 Fruity_Pebbles P C 110 \n",
".. ... .. ... ... \n",
"47 Multi-Grain_Cheerios G C 100 \n",
"48 Nut&Honey_Crunch K C 120 \n",
"49 Nutri-Grain_Almond-Raisin K C 140 \n",
"50 Nutri-grain_Wheat K C 90 \n",
"51 Oatmeal_Raisin_Crisp G C 130 \n",
"52 Post_Nat._Raisin_Bran P C 120 \n",
"53 Product_19 K C 100 \n",
"54 Puffed_Rice Q C 50 \n",
"55 Puffed_Wheat Q C 50 \n",
"56 Quaker_Oat_Squares Q C 100 \n",
"57 Quaker_Oatmeal Q H 100 \n",
"58 Raisin_Bran K C 120 \n",
"59 Raisin_Nut_Bran G C 100 \n",
"60 Raisin_Squares K C 90 \n",
"61 Rice_Chex R C 110 \n",
"62 Rice_Krispies K C 110 \n",
"63 Shredded_Wheat N C 80 \n",
"64 Shredded_Wheat_'n'Bran N C 90 \n",
"65 Shredded_Wheat_spoon_size N C 90 \n",
"66 Smacks K C 110 \n",
"67 Special_K K C 110 \n",
"68 Strawberry_Fruit_Wheats N C 90 \n",
"69 Total_Corn_Flakes G C 110 \n",
"70 Total_Raisin_Bran G C 140 \n",
"71 Total_Whole_Grain G C 100 \n",
"72 Triples G C 110 \n",
"73 Trix G C 110 \n",
"74 Wheat_Chex R C 100 \n",
"75 Wheaties G C 100 \n",
"76 Wheaties_Honey_Gold G C 110 \n",
"\n",
" protein (g) fat (g) sodium (mg) dietary fiber (g) \\\n",
"0 4 1 130 10.0 \n",
"1 3 5 15 2.0 \n",
"2 4 1 260 9.0 \n",
"3 4 0 140 14.0 \n",
"4 2 2 200 1.0 \n",
"5 2 2 180 1.5 \n",
"6 2 0 125 1.0 \n",
"7 3 2 210 2.0 \n",
"8 2 1 200 4.0 \n",
"9 3 0 210 5.0 \n",
"10 1 2 220 0.0 \n",
"11 6 2 290 2.0 \n",
"12 1 3 210 0.0 \n",
"13 3 2 140 2.0 \n",
"14 1 1 180 0.0 \n",
"15 2 0 280 0.0 \n",
"16 2 0 290 1.0 \n",
"17 1 0 90 1.0 \n",
"18 1 1 180 0.0 \n",
"19 3 3 140 4.0 \n",
"20 3 0 80 1.0 \n",
"21 2 0 220 1.0 \n",
"22 2 1 140 2.0 \n",
"23 2 0 190 1.0 \n",
"24 2 1 125 1.0 \n",
"25 1 0 200 1.0 \n",
"26 3 0 0 3.0 \n",
"27 3 2 160 5.0 \n",
"28 3 0 240 5.0 \n",
"29 1 1 135 0.0 \n",
".. ... ... ... ... \n",
"47 2 1 220 2.0 \n",
"48 2 1 190 0.0 \n",
"49 3 2 220 3.0 \n",
"50 3 0 170 3.0 \n",
"51 3 2 170 1.5 \n",
"52 3 1 200 6.0 \n",
"53 3 0 320 1.0 \n",
"54 1 0 0 0.0 \n",
"55 2 0 0 1.0 \n",
"56 4 1 135 2.0 \n",
"57 5 2 0 2.7 \n",
"58 3 1 210 5.0 \n",
"59 3 2 140 2.5 \n",
"60 2 0 0 2.0 \n",
"61 1 0 240 0.0 \n",
"62 2 0 290 0.0 \n",
"63 2 0 0 3.0 \n",
"64 3 0 0 4.0 \n",
"65 3 0 0 3.0 \n",
"66 2 1 70 1.0 \n",
"67 6 0 230 1.0 \n",
"68 2 0 15 3.0 \n",
"69 2 1 200 0.0 \n",
"70 3 1 190 4.0 \n",
"71 3 1 200 3.0 \n",
"72 2 1 250 0.0 \n",
"73 1 1 140 0.0 \n",
"74 3 1 230 3.0 \n",
"75 3 1 200 3.0 \n",
"76 2 1 200 1.0 \n",
"\n",
" complex carbohydrates (g) sugars (g) shelf potassium (mg) \\\n",
"0 5.0 6 3 280 \n",
"1 8.0 8 3 135 \n",
"2 7.0 5 3 320 \n",
"3 8.0 0 3 330 \n",
"4 14.0 8 3 -1 \n",
"5 10.5 10 1 70 \n",
"6 11.0 14 2 30 \n",
"7 18.0 8 3 100 \n",
"8 15.0 6 1 125 \n",
"9 13.0 5 3 190 \n",
"10 12.0 12 2 35 \n",
"11 17.0 1 1 105 \n",
"12 13.0 9 2 45 \n",
"13 13.0 7 3 105 \n",
"14 12.0 13 2 55 \n",
"15 22.0 3 1 25 \n",
"16 21.0 2 1 35 \n",
"17 13.0 12 2 20 \n",
"18 12.0 13 2 65 \n",
"19 10.0 7 3 160 \n",
"20 21.0 0 2 -1 \n",
"21 21.0 3 3 30 \n",
"22 11.0 10 3 120 \n",
"23 18.0 5 3 80 \n",
"24 11.0 13 2 30 \n",
"25 14.0 11 1 25 \n",
"26 14.0 7 2 100 \n",
"27 12.0 10 3 200 \n",
"28 14.0 12 3 190 \n",
"29 13.0 12 2 25 \n",
".. ... ... ... ... \n",
"47 15.0 6 1 90 \n",
"48 15.0 9 2 40 \n",
"49 21.0 7 3 130 \n",
"50 18.0 2 3 90 \n",
"51 13.5 10 3 120 \n",
"52 11.0 14 3 260 \n",
"53 20.0 3 3 45 \n",
"54 13.0 0 3 15 \n",
"55 10.0 0 3 50 \n",
"56 14.0 6 3 110 \n",
"57 -1.0 -1 1 110 \n",
"58 14.0 12 2 240 \n",
"59 10.5 8 3 140 \n",
"60 15.0 6 3 110 \n",
"61 23.0 2 1 30 \n",
"62 22.0 3 1 35 \n",
"63 16.0 0 1 95 \n",
"64 19.0 0 1 140 \n",
"65 20.0 0 1 120 \n",
"66 9.0 15 2 40 \n",
"67 16.0 3 1 55 \n",
"68 15.0 5 2 90 \n",
"69 21.0 3 3 35 \n",
"70 15.0 14 3 230 \n",
"71 16.0 3 3 110 \n",
"72 21.0 3 3 60 \n",
"73 13.0 12 2 25 \n",
"74 17.0 3 1 115 \n",
"75 17.0 3 1 110 \n",
"76 16.0 8 1 60 \n",
"\n",
" vitamins and minerals weight (in ounces) of one serving (serving size) \\\n",
"0 25 1.00 \n",
"1 0 1.00 \n",
"2 25 1.00 \n",
"3 25 1.00 \n",
"4 25 1.00 \n",
"5 25 1.00 \n",
"6 25 1.00 \n",
"7 25 1.33 \n",
"8 25 1.00 \n",
"9 25 1.00 \n",
"10 25 1.00 \n",
"11 25 1.00 \n",
"12 25 1.00 \n",
"13 25 1.00 \n",
"14 25 1.00 \n",
"15 25 1.00 \n",
"16 25 1.00 \n",
"17 25 1.00 \n",
"18 25 1.00 \n",
"19 25 1.00 \n",
"20 0 1.00 \n",
"21 25 1.00 \n",
"22 25 1.00 \n",
"23 25 1.00 \n",
"24 25 1.00 \n",
"25 25 1.00 \n",
"26 25 1.00 \n",
"27 25 1.25 \n",
"28 25 1.33 \n",
"29 25 1.00 \n",
".. ... ... \n",
"47 25 1.00 \n",
"48 25 1.00 \n",
"49 25 1.33 \n",
"50 25 1.00 \n",
"51 25 1.25 \n",
"52 25 1.33 \n",
"53 100 1.00 \n",
"54 0 0.50 \n",
"55 0 0.50 \n",
"56 25 1.00 \n",
"57 0 1.00 \n",
"58 25 1.33 \n",
"59 25 1.00 \n",
"60 25 1.00 \n",
"61 25 1.00 \n",
"62 25 1.00 \n",
"63 0 0.83 \n",
"64 0 1.00 \n",
"65 0 1.00 \n",
"66 25 1.00 \n",
"67 25 1.00 \n",
"68 25 1.00 \n",
"69 100 1.00 \n",
"70 100 1.50 \n",
"71 100 1.00 \n",
"72 25 1.00 \n",
"73 25 1.00 \n",
"74 25 1.00 \n",
"75 25 1.00 \n",
"76 25 1.00 \n",
"\n",
" cups per serving \n",
"0 0.33 \n",
"1 -1.00 \n",
"2 0.33 \n",
"3 0.50 \n",
"4 0.75 \n",
"5 0.75 \n",
"6 1.00 \n",
"7 0.75 \n",
"8 0.67 \n",
"9 0.67 \n",
"10 0.75 \n",
"11 1.25 \n",
"12 0.75 \n",
"13 0.50 \n",
"14 1.00 \n",
"15 1.00 \n",
"16 1.00 \n",
"17 1.00 \n",
"18 1.00 \n",
"19 0.50 \n",
"20 1.00 \n",
"21 1.00 \n",
"22 0.75 \n",
"23 0.75 \n",
"24 1.00 \n",
"25 0.75 \n",
"26 0.80 \n",
"27 0.67 \n",
"28 0.67 \n",
"29 0.75 \n",
".. ... \n",
"47 1.00 \n",
"48 0.67 \n",
"49 0.67 \n",
"50 -1.00 \n",
"51 0.50 \n",
"52 0.67 \n",
"53 1.00 \n",
"54 1.00 \n",
"55 -1.00 \n",
"56 0.50 \n",
"57 0.67 \n",
"58 0.75 \n",
"59 0.50 \n",
"60 0.50 \n",
"61 1.13 \n",
"62 1.00 \n",
"63 -1.00 \n",
"64 0.67 \n",
"65 0.67 \n",
"66 0.75 \n",
"67 1.00 \n",
"68 -1.00 \n",
"69 1.00 \n",
"70 1.00 \n",
"71 1.00 \n",
"72 0.75 \n",
"73 1.00 \n",
"74 0.67 \n",
"75 1.00 \n",
"76 0.75 \n",
"\n",
"[77 rows x 15 columns]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 Plot FatVsCalories"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG6xJREFUeJzt3X+UHWWd5/H3p6FJAomQdLIxphMTJ4FZkBB3ezkEJhzU\nGcDRIbNmVebIgKMu64w/GWcDjHNE2fE4G3fAdTw4hwPIL8WDBgnKRkBEIwJio0kMgUivDaQzkHSa\nxE00aTrp7/5xK3A7VnfX7e661X3r8zrnnk49t+rWt07D/XTVU/U8igjMzMyO1FR0AWZmNj45IMzM\nLJUDwszMUjkgzMwslQPCzMxSOSDMzCyVA8LMzFI5IMzMLJUDwszMUh1ddAGjMXPmzFiwYEHRZZiZ\nTShPPPHEroiYNdx6EzogFixYQHt7e9FlmJlNKJKey7KeLzGZmVkqB4SZmaVyQJiZWSoHhJmZpXJA\nmJlZqtwCQtJNknZK2nxE+0clPS3pSUmrq9qvlNQhaauk8/Kqy8qjZ18vG7ftoWdfb9GlmE1Ied7m\nejPwZeDWww2S3gysAE6LiF5J/y5pPxm4EDgFeB3wfUknRsShHOuzBrZ2w3YuX7OJ5qYm+vr7Wb1y\nCRcsnVt0WWYTSm5nEBGxHnjpiOa/Bv4pInqTdXYm7SuAb0REb0R0Ah3A6XnVZo2tZ18vl6/ZxIG+\nfvb2HuRAXz+r1mzymYRZjerdB3EisFzSTyX9SNJ/StrnAtuq1utK2n6PpEsltUtq7+7uzrlcm4i6\ndu+nuWngf9rNTU107d5fUEVmE1O9A+JoYAZwBvDfgTslqZYPiIjrI6ItItpmzRr2SXErodbpU+jr\n7x/Q1tffT+v0KQVVZDYx1TsguoC7ouJxoB+YCWwH5lWt15q0mdWsZeokVq9cwuTmJqZNOprJzU2s\nXrmElqmTii7NbEKp91hMdwNvBh6SdCJwDLALuAf4uqRrqHRSLwYer3Nt1kAuWDqXsxbNpGv3flqn\nT3E4mI1AbgEh6Q7gHGCmpC7gKuAm4Kbk1teXgUsiIoAnJd0JbAEOAh/2HUw2Wi1TJzkYzEZBle/n\niamtrS08mquZWW0kPRERbcOt5yepzcwslQPCzMxSOSDMzCyVA8LMzFI5IMzMLJUDwszMUjkgzMws\nlQPCzMxSOSDMzCyVA8KsgXTs2Mu32rfRsWNv0aVYA6j3YH1mlpNP3/1Lbn3s+VeWL142n6tXnFpg\nRTbR+QzCrAF07Ng7IBwAbn30eZ9J2Kg4IMwawIZte2pqN8vCAWHWAJbOO6GmdrMsHBBmDWDR7Glc\nvGz+gLaLl81n0expBVVkjcCd1GYN4uoVp3LxGQvYsG0PS+ed4HCwUXNAmDWQRbOnORhszPgSk5mZ\npXJAmJlZKgeEmZmlckCYmVkqB4SZmaVyQJiZWSoHhJmZpXJAmJlZKgeEmZmlckCYmVmq3AJC0k2S\ndkranPLeJyWFpJlVbVdK6pC0VdJ5edVVZmWbbaxnXy8bt+2hZ19v0aWYTUh5jsV0M/Bl4NbqRknz\ngHOB56vaTgYuBE4BXgd8X9KJEXEox/pKpWyzja3dsJ3L12yiuamJvv5+Vq9cwgVL5xZdltmEktsZ\nRESsB15KeetaYBUQVW0rgG9ERG9EdAIdwOl51VY2ZZttrGdfL5ev2cSBvn729h7kQF8/q9Zs8pmE\nWY3q2gchaQWwPSI2HvHWXGBb1XJX0pb2GZdKapfU3t3dnVOljaVss4117d5Pc9PA/7Sbm5ro2r2/\noIrMJqa6BYSkY4G/Bz49ms+JiOsjoi0i2mbNmjU2xTW4ss021jp9Cn39/QPa+vr7aZ0+paCKzCam\nep5B/AGwENgo6VmgFfi5pNcC24F5Veu2Jm02Bso221jL1EmsXrmEyc1NTJt0NJObm1i9cgktUycV\nXZrZhKKIGH6tkX64tAD4bkS8MeW9Z4G2iNgl6RTg61T6HV4HPAgsHq6Tuq2tLdrb28e67IbVsWNv\nqWYb69nXS9fu/bROn+JwMKsi6YmIaBtuvdzuYpJ0B3AOMFNSF3BVRNyYtm5EPCnpTmALcBD4sO9g\nGntlm22sZeokB4PZKOQWEBHxF8O8v+CI5c8Bn8urHjMzq42fpDYzs1QOCDMzS+WAMDOzVA4IMzNL\n5YAwM7NUDggzM0vlgDAzs1QOCDMzS+WAMDOzVA4Ia1hlm0HPbKzlOaOcWWHKNoOeWR58BmENp2wz\n6JnlxQFhDadsM+iZ5cUBYQ2nbDPomeXFAWENp2wz6JnlZdhOakmtwIXAciqzve0HNgP3Ausion+I\nzc0KcfWKU7n4jAWlmkHPbKwNGRCSvgrMBb4L/E9gJzAZOBE4H/iUpCsiYn3ehZrVqmwz6JmNteHO\nIP45IjantG8G7pJ0DDA/5X0zM5vghuyDiIjNko6S9LVB3n85IjryKc3MzIo0bCd1RBwCXp+cLZiZ\nWUlkfZL618BPJN0D/PZwY0Rck0tVZmZWuKwB8X+TVxPgXj8zsxLIFBAR8VkAScdGxO/yLcnMzMaD\nTA/KSVomaQvwdLJ8mqTrcq3MzMwKlfVJ6i8C5wE9ABGxETg7r6LMzKx4mYfaiIhtRzQdGuNazMxs\nHMkaENsknQmEpGZJfwc8NdQGkm6StFPS5qq2L0h6WtImSd+WdELVe1dK6pC0VdJ5IzoaMzMbM1kD\n4kPAh6kMu/FvwNJkeSg3UxmOo9oDwBsjYgnwK+BKAEknUxnv6ZRkm+skHZWxthHp2dfLxm176NnX\nm+duxpX2zh6uuX8r7Z09RZdSF2U7XvAsemVRr++vrHcx7QLeW8sHR8R6SQuOaLu/avEx4L8k/14B\nfCMieoFOSR3A6cCjtewzq7UbtnP5mk00NzXR19/P6pVLuGDp3Dx2NW5cdMNjPNxR+aL80g86WL6o\nhds+eEbBVeWnbMcLnkWvLOr5/ZX1LqY3SPqOpO7kstFaSW8Y5b7fD6xL/j0XqO7j6EraxlzPvl4u\nX7OJA3397O09yIG+flat2dTQZxLtnT2vfFke9uOOnob9y7psxwueRa8s6v39lfUS09eBO4E5VIb8\n/iZwx0h3KulTwEEgdYynYba9VFK7pPbu7u6a9921ez/NTQMPu7mpia7d+2v+rIli/TO7amqf6Mp2\nvOBZ9Mqi3t9fWQPi2Ii4LSIOJq/bqQz7XTNJ7wPeAbw3IiJp3g7Mq1qtNWn7PRFxfUS0RUTbrFmz\nat5/6/Qp9PUPnMKir7+f1ulTav6sieLsxTNrap/oyna84Fn0yqLe319DBoSkGZJmAOskXSFpgaTX\nS1oF/J9adybpfGAVcMERT2TfA1woaZKkhcBi4PFaPz+LlqmTWL1yCZObm5g26WgmNzexeuUSWqZO\nymN340LbwhaWL2oZ0LZ8UQttC1sG2WJiK9vxgmfRK4t6f3/p1T/iU96UOoEAlPJ2RMSg/RCS7gDO\nAWYCO4CrqNy1NInkgTvgsYj4ULL+p6j0SxwEPhER6478zCO1tbVFe3v7cKul6tnXS9fu/bROn9LQ\n4VCtvbOH9c/s4uzFMxv6y/Kwsh0vVPoiPIte4xvt95ekJyKibdj1hgqI8W40AWFmVlZZAyLTba7J\nMwlvBxZUb+Phvs3MGlfW4b6/AxwAfgn0D7OumZk1gKwB0Zo8/WxmZiWR9TbXdZLOzbUSMzMbV7Ke\nQTwGfFtSE9BH5a6miIjX5FaZmZkVKmtAXAMsA34ZE/m2JzMzyyzzcN/AZoeDmVl5ZD2D+DXwQ0nr\ngFdGhfJtrmZmjStrQHQmr2OSl5mZNbis80F8Nu9CzMxsfMn6JPVDVMZkGiAi3jLmFdXJP9y1kXVP\n7uBtp8zmH995WtHl1MX7bniURzpf4syFM7j5g8uKLid3D255kfu37ODck2fz1pNfW3Q5dVHGMcYs\nP5nGYpL0H6sWJwMrgYMRsSqvwrIY6VhMC6649/fanv2nt49FSeNW2Y753Gt/yK92/PaV5ZNmH8d9\nl51TXEF1UMaZEm1kso7FlOkupoh4our1k4j4WyojtU44/3DXxpraG8H7bkifuXWw9onuwS0vDggH\ngK07fsuDW14sqKL8lXGmRMtf1ilHZ1S9Zko6Dzg+59pyse7JHTW1N4JHOl+qqX2iu39L+u9ysPZG\nUMaZEi1/WZ+DeAJoT34+CnwS+EBeReXpbafMrqm9EZy5cEZN7RPduSen/y4Ha28EZZwp0fKX9RLT\nwoh4Q/JzcUScGxEP511cHgbrkG7kjurBOqQbtaP6rSe/lpNmHzeg7aTZxzV0R3UZZ0q0/GWeMEjS\nmfz+fBC35lNWNqOZMMh3MTVmOFTzXUwOB0s3pjPKSboN+ANgA3AoaY6I+NioqhwlzyhnZla7MZ1R\nDmgDTvZYTGZm5ZG1k3ozUI5zdDMzA7KfQcwEtkh6nIGD9V2QS1VmZla4rAHxmTyLMDOz8WfIgJCk\nqPjRcOuMfWlmZlak4fogHpL0UUnzqxslHSPpLZJuAS7JrzwzMyvKcJeYzgfeD9whaSGwB5hCJVju\nB74YEb/It0QzMyvCkAEREQeA64DrJDVT6azeHxF76lGcmZkVJ2snNRHRB7yQYy1mZjaOZH0OomaS\nbpK0U9LmqrYZkh6Q9Ezyc3rVe1dK6pC0NRkt1szMCpRbQAA3U+nDqHYF8GBELAYeTJaRdDJwIXBK\nss11ko7KsTZuf6STd/3rI9z+SGeeuxlXrr3vKc75wkNce99TRZdSF+2dPVxz/1baO3uKLsVsQso6\nFtNxVPoe+iWdCPwhsC657DTUdguA70bEG5PlrcA5EfGCpDnADyPiJElXAkTE55P17gM+ExFDzmgz\n0rGYTvvM9/jNgUOvLB8/+Sg2fubILGssi6+8l76qX3Wz4JnPN+6Mchfd8BgPd7waDMsXtXDbB88o\nsCKz8WNMZ5QD1gOTJc2lcvfSX1I5Q6jV7Ig43I/xInB4gP65wLaq9bqStjF3+yOdA8IB4DcHDjX0\nmcS19z01IBwA+oKGPZNo7+wZEA4AP+7o8ZmEWY2yBoQi4nfAO4HrIuJdVC4HjVjycF3ND9hJulRS\nu6T27u7umve7dlN6P/tg7Y1g7ab0qTYHa5/o1j+zq6Z2M0uXOSAkLQPeC9ybtI2kj2BHcmmJ5OfO\npH07MK9qvdak7fdExPUR0RYRbbNmzaq5gBVL5tTU3ghWLEkfZ3Gw9onu7MUza2o3s3RZA+ITwJXA\ntyPiSUlvAB4awf7u4dUnry8B1la1XyhpUvJA3mLg8RF8/rAuOnMhx08emG3HTz6Ki85cmMfuxoXL\nzvv3NGtgW7Mq7Y2obWELyxe1DGhbvqiFtoUtg2xhZmkyzygHIOnY5FJTlnXvAM6h8nDdDuAq4G7g\nTmA+8Bzw7oh4KVn/U1Se2j4IfCIi1g23j9FMGHT7I52s3fQCK5bMaehwqHbtfU+xdtOLrFjy2oYN\nh2rtnT2sf2YXZy+e6XAwqzLWM8otA24EpkbEfEmnAf8tIv5m9KWOnGeUMzOr3VjfxfRF4DygByAi\nNgJnj7w8MzMb7zI/KBcR245oOpS6opmZNYSsYzFtk3QmEMmgfR8HGvMmejMzA7KfQXwI+DCVh9e2\nA0uTZTMza1CZziAiYheVZyDMzKwkhptydFVErJb0L6Q89RwRH8utMjMzK9RwZxCH+xl8L6mZWckM\nN6Pcd5Jht0+NiL+rU01mZjYODNtJHRGHgLPqUIuZmY0jWW9z3SDpHuCbwG8PN0bEXblUZWZmhcsa\nEJOpPEX9lqq2ACZsQJRxLKaefb107d5P6/QptEydVHQ5ZjbOZb3N9a/yLqSeqmeU+9mzu/nC/Vsb\nfka5tRu2c/maTTQ3NdHX38/qlUu4YGkuczKZWYPI9KCcpFZJ35a0M3mtkdSad3F5KOOMcj37erl8\nzSYO9PWzt/cgB/r6WbVmEz37eosuzczGsaxPUn+VypwNr0te30naJpwyzijXtXs/zU0Df9XNTU10\n7d5fUEVmNhFkDYhZEfHViDiYvG4Gap/ObRwo44xyrdOn0NffP6Ctr7+f1ulTCqrIzCaCrAHRI+ki\nSUclr4tIhv6eaMo4o1zL1EmsXrmEyc1NTJt0NJObm1i9cok7qs1sSFknDHo98C/AMip3Lz0CfCwi\nns+3vKF5Rrna+C4mM4MxnlFuvPKMcmZmtcsaEMMN1pc6SN9hHqzPzKxxDfcchP88NzMrqeEG67ul\nXoWYmdn4kulJakmzgMuBk6kMuwFARLxl0I3MzGxCy3qb69eozA2xEPgs8Czws5xqMjOzcSBrQLRE\nxI1AX0T8KCLez8CB+8zMrMFkHc21L/n5gqS3A/8GzMinJDMzGw+yBsQ/Sjoe+CSVB+ZeA1yWW1Vm\nZla4rMN9fzf552+AN+dXjpmZjRdZh/u+RdIJVcvTJd000p1KukzSk5I2S7pD0mRJMyQ9IOmZ5Of0\nkX6+mZmNXtZO6iURsefwQkTsBt40kh1Kmgt8DGiLiDcCRwEXAlcAD0bEYuDBZDk3Pft62bhtj+dE\nMDMbRNY+iCZJ05NgQNKMGrYdbL9TJPUBx1Lp9L4SOCd5/xbgh1SevRhznl3NzGx4Wb/k/xl4VNI3\nk+V3AZ8byQ4jYruk/wU8D+wH7o+I+yXNjojDs/a8CMweyecPp3p2tQNU5khYtWYTZy2a6RFOzcyq\nZLrEFBG3Au8EdiSvd0bEbSPZYdK3sILKQ3evA45L5peo3l8wyCCBki6V1C6pvbu7u+b9e3Y1M7Ns\nMl8miogtwJYx2OcfA50R0Q0g6S7gTGCHpDkR8YKkOcDOQeq4HrgeKsN917pzz65mZpZN1k7qsfQ8\ncIakYyUJeCuVYTzuAS5J1rkEWJvHzj27mplZNqPpaB6RiPippG8BPwcOAr+gckYwFbhT0geA54B3\n51XDBUvnctaimZ5dzcxsCHUPCICIuAq46ojmXipnE3XRMnWSg8HMbAhFXGIyM7MJwAFhZmapHBBm\nZpbKAWFmZqkcEGZmlsoBYWZmqRwQZmaWygFhZmapHBBmZpbKAWFmZqkcECXSsWMv32rfRseOvUWX\nYmYTQCFjMVn9ffruX3LrY8+/snzxsvlcveLUAisys/HOZxAl0LFj74BwALj10ed9JmFmQ3JAlMCG\nbXtqajczAwdEKSydd0JN7WZm4IAohUWzp3HxsvkD2i5eNp9Fs6cVVJGZTQTupC6Jq1ecysVnLGDD\ntj0snXeCw8HMhuWAKJFFs6c5GMwsM19iMjOzVA4IMzNL5YAwM7NUDggzM0vlgDAzs1QOCDMzS+WA\nMDOzVA4IMzNL5YAwM7NUhQSEpBMkfUvS05KekrRM0gxJD0h6Jvk5vYjazMysoqgziP8NfC8i/hA4\nDXgKuAJ4MCIWAw8my2ZmVpC6B4Sk44GzgRsBIuLliNgDrABuSVa7BfjzetdmZmavKuIMYiHQDXxV\n0i8k3SDpOGB2RLyQrPMiMLuA2szMLFFEQBwN/AfgKxHxJuC3HHE5KSICiLSNJV0qqV1Se3d3d+7F\nmpmVVREB0QV0RcRPk+VvUQmMHZLmACQ/d6ZtHBHXR0RbRLTNmjWrLgWbmZVR3QMiIl4Etkk6KWl6\nK7AFuAe4JGm7BFhb79rMzOxVRU0Y9FHga5KOAX4N/BWVsLpT0geA54B3F1SbmZlRUEBExAagLeWt\nt9a7FjMzS+cnqc3MLJUDwszMUjkgzMwslQPCzMxSOSDMzCyVA8LMzFI5IMzMLJUDwszMUjkgzMws\nlQPCzMxSlTYg2jt7uOb+rbR39hRdipnZuFTUYH2FuuiGx3i4oxIMX/pBB8sXtXDbB88ouCozs/Gl\ndGcQ7Z09r4TDYT/u6PGZhJnZEUoXEOuf2VVTu5lZWZUuIM5ePLOmdjOzsipdQLQtbGH5opYBbcsX\ntdC2sGWQLczMyqmUndS3ffAM2jt7WP/MLs5ePNPhYGaWopQBAZUzCQeDmdngSneJyczMsnFAmJlZ\nKgeEmZmlckCYmVkqB4SZmaVSRBRdw4hJ6gaeG8VHzATK9gh12Y65bMcLPuayGM0xvz4iZg230oQO\niNGS1B4RbUXXUU9lO+ayHS/4mMuiHsfsS0xmZpbKAWFmZqnKHhDXF11AAcp2zGU7XvAxl0Xux1zq\nPggzMxtc2c8gzMxsEKUMCEnnS9oqqUPSFUXXUw+SbpK0U9LmomupB0nzJD0kaYukJyV9vOia8iZp\nsqTHJW1MjvmzRddUD5KOkvQLSd8tupZ6kPSspF9K2iCpPdd9le0Sk6SjgF8BfwJ0AT8D/iIithRa\nWM4knQ3sA26NiDcWXU/eJM0B5kTEzyVNA54A/ryRf8+SBBwXEfskNQMPAx+PiMcKLi1Xkv4WaANe\nExHvKLqevEl6FmiLiNyf+yjjGcTpQEdE/DoiXga+AawouKbcRcR64KWi66iXiHghIn6e/Hsv8BQw\nt9iq8hUV+5LF5uTV0H8BSmoF3g7cUHQtjaiMATEX2Fa13EWDf3GUnaQFwJuAnxZbSf6Syy0bgJ3A\nAxHR6Mf8RWAV0F90IXUUwPclPSHp0jx3VMaAsBKRNBVYA3wiIv5f0fXkLSIORcRSoBU4XVLDXk6U\n9A5gZ0Q8UXQtdfZHye/4bcCHk8vHuShjQGwH5lUttyZt1mCS6/BrgK9FxF1F11NPEbEHeAg4v+ha\ncnQWcEFyTf4bwFsk3V5sSfmLiO3Jz53At6lcNs9FGQPiZ8BiSQslHQNcCNxTcE02xpIO2xuBpyLi\nmqLrqQdJsySdkPx7CpUbMZ4utqr8RMSVEdEaEQuo/H/8g4i4qOCyciXpuOSmCyQdB5wL5HZnYukC\nIiIOAh8B7qPScXlnRDxZbFX5k3QH8ChwkqQuSR8ouqacnQX8JZW/Kjckrz8tuqiczQEekrSJyh9C\nD0REKW79LJHZwMOSNgKPA/dGxPfy2lnpbnM1M7NsSncGYWZm2TggzMwslQPCzMxSOSDMzCyVA8LM\nzFI5IMyGIOljkp6S9LUh1lk61C20kt4k6cZh9nOMpPWSjh5NvWZjyQFhNrS/Af4kIt47xDpLgaGe\nsfh74EtD7SQZOPJB4D01V2iWEweE2SAk/SvwBmCdpMsknS7p0WTugUcknZQ8jX818J7kYbz3HPEZ\n04AlEbExWZ4l6YFkvoYbJD0naWay+t3AUEFkVld+UM5sCNVj70t6DfC7iDgo6Y+Bv46IlZLel6zz\nkZTt3wx8JCJWJstfBrZHxOclnQ+sA2Yln38U8GJEzKrT4ZkNydc7zbI7HrhF0mIqQy43Z9hmDtBd\ntfxHwH8GiIjvSdp9+I2IOCTpZUnTkjkszArlS0xm2f0P4KFkRr4/AyZn2GZ/xvUOmwQcGEFtZmPO\nAWGW3fG8OjT8+6ra9wLTBtnmKWBR1fJPgHcDSDoXmH74DUktwK6I6Bujes1GxQFhlt1q4POSfsHA\ny7MPASendVJHxNPA8YeHaAY+C5wraTPwLuBFKgED8Gbg3jwPwKwW7qQ2y5mky4C9EXGDpEnAoaSj\nexnwlWR2MCTdBVwREb8qsl6zw9xJbZa/r1A5WwCYD9wpqQl4GfivUHlQDrjb4WDjic8gzMwslfsg\nzMwslQPCzMxSOSDMzCyVA8LMzFI5IMzMLJUDwszMUv1/foOzxAizAxIAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.plot(x='fat (g)', y='calories (number)', kind='scatter')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 1.3 Compute the average number of calories, as well as the average amount of complex carbohydrates and sugars in the data set."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"#Start your answers here - add more cells as necessary!\n",
"avg_calories = df['calories (number)'].mean()\n",
"avg_cplx_carbs = df['complex carbohydrates (g)'].mean()\n",
"avg_sugars = df['sugars (g)'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(106.88311688311688, 14.597402597402597, 6.922077922077922)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"avg_calories, avg_cplx_carbs, avg_sugars"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 1.4 What is the name of the cereal that has the highest sugar content?"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['sugars (g)'].max()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"30 Golden_Crisp\n",
"66 Smacks\n",
"Name: name, dtype: object"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['sugars (g)'] == df['sugars (g)'].max()].name"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 1.5 Calorie content by shelf\n",
"The 8th column of the data set contains the shelf at which the cereal is displayed in the supermarket (either 1, 2, or 3). Compute the mean number of calories of the cereals displayed in each shelf. If you do this correctly you should find the the cereals displayed on the middle shelf have a higher calorie content on average. "
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"0 3\n",
"1 3\n",
"2 3\n",
"3 3\n",
"4 3\n",
"5 1\n",
"6 2\n",
"7 3\n",
"8 1\n",
"9 3\n",
"10 2\n",
"11 1\n",
"12 2\n",
"13 3\n",
"14 2\n",
"15 1\n",
"16 1\n",
"17 2\n",
"18 2\n",
"19 3\n",
"20 2\n",
"21 3\n",
"22 3\n",
"23 3\n",
"24 2\n",
"25 1\n",
"26 2\n",
"27 3\n",
"28 3\n",
"29 2\n",
" ..\n",
"47 1\n",
"48 2\n",
"49 3\n",
"50 3\n",
"51 3\n",
"52 3\n",
"53 3\n",
"54 3\n",
"55 3\n",
"56 3\n",
"57 1\n",
"58 2\n",
"59 3\n",
"60 3\n",
"61 1\n",
"62 1\n",
"63 1\n",
"64 1\n",
"65 1\n",
"66 2\n",
"67 1\n",
"68 2\n",
"69 3\n",
"70 3\n",
"71 3\n",
"72 3\n",
"73 2\n",
"74 1\n",
"75 1\n",
"76 1\n",
"Name: shelf, dtype: int64"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.shelf"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"source": [
"Hint: remember `.grouby` ? "
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" calories (number) | \n",
" protein (g) | \n",
" fat (g) | \n",
" sodium (mg) | \n",
" dietary fiber (g) | \n",
" complex carbohydrates (g) | \n",
" sugars (g) | \n",
" potassium (mg) | \n",
" vitamins and minerals | \n",
" weight (in ounces) of one serving (serving size) | \n",
" cups per serving | \n",
"
\n",
" \n",
" shelf | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 102.500000 | \n",
" 2.650000 | \n",
" 0.60 | \n",
" 176.250000 | \n",
" 1.685000 | \n",
" 15.800000 | \n",
" 4.800000 | \n",
" 75.500000 | \n",
" 20.000000 | \n",
" 0.991500 | \n",
" 0.797000 | \n",
"
\n",
" \n",
" 2 | \n",
" 109.523810 | \n",
" 1.904762 | \n",
" 1.00 | \n",
" 145.714286 | \n",
" 0.904762 | \n",
" 13.619048 | \n",
" 9.619048 | \n",
" 57.809524 | \n",
" 23.809524 | \n",
" 1.015714 | \n",
" 0.720952 | \n",
"
\n",
" \n",
" 3 | \n",
" 107.777778 | \n",
" 2.861111 | \n",
" 1.25 | \n",
" 158.611111 | \n",
" 3.138889 | \n",
" 14.500000 | \n",
" 6.527778 | \n",
" 129.833333 | \n",
" 35.416667 | \n",
" 0.947778 | \n",
" 0.392778 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" calories (number) protein (g) fat (g) sodium (mg) \\\n",
"shelf \n",
"1 102.500000 2.650000 0.60 176.250000 \n",
"2 109.523810 1.904762 1.00 145.714286 \n",
"3 107.777778 2.861111 1.25 158.611111 \n",
"\n",
" dietary fiber (g) complex carbohydrates (g) sugars (g) \\\n",
"shelf \n",
"1 1.685000 15.800000 4.800000 \n",
"2 0.904762 13.619048 9.619048 \n",
"3 3.138889 14.500000 6.527778 \n",
"\n",
" potassium (mg) vitamins and minerals \\\n",
"shelf \n",
"1 75.500000 20.000000 \n",
"2 57.809524 23.809524 \n",
"3 129.833333 35.416667 \n",
"\n",
" weight (in ounces) of one serving (serving size) cups per serving \n",
"shelf \n",
"1 0.991500 0.797000 \n",
"2 1.015714 0.720952 \n",
"3 0.947778 0.392778 "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby('shelf').mean()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 1.6 Make a box plot showing the sugar content of cereals grouped by shelf (recreating the plot that you'll find on the homepage for this data set). "
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEcCAYAAAAvJLSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGJtJREFUeJzt3XuYJXV95/H3Ry4KOIIGbQWU8RYiERUcNa5RG2/Byy5u\n1CiJ1yWOZuNt4z46XhI0QsSYu+6q44KgENQoJobxQY3OWdeoKCCggMYbyk3RIMqoUSHf/aNq5NDp\nme7pU6e7Z37v1/OcZ86pqlP1rVPTn/71r35VJ1WFJKktt1jpAiRJy8/wl6QGGf6S1CDDX5IaZPhL\nUoMMf0lqkOGvZZPklCTHr3QdK217n0OSZyf55JS3v+RtzH1vkock+UqSLUmeOFyVmjbDv0FJLkvy\nk/4H9vtJNiW580rXNS5JJbnHStehBf0x8OaqunVV/f1KF6PFM/zb9Z+r6tbAnYDvAG9a4XqmJh3/\nr0/HwcDFK12Edpw/EI2rqn8D3gccunVakn2TvDPJd5N8M8mrt4Znkrckef/Ysm9I8rE+YGeTXJHk\nlUm+1/+F8Tvb2naS5yb5apJrk3wwyQH99E/0i1zY/3Xy1Hneu1uSP++3840kL+j/Wti9nz9KckKS\nfwZ+DNwtyQH9dq7tt/vcsfXdrCtm676Mvb4sySuSXNL/tfSOJLcam/+EJBckuS7Jp5LcZ2ze4UnO\nT3J9kvcAv3jftj+avDnJD5J8Kckj+4lPSXLenAX/IMk/bGMlz07y9X6735h7LJL8Wb8v30jy2LHp\n+yY5KcnVSa5McnyS3eZZ/9eAuwH/2B+nWy6wX1pFDP/GJdkbeCrwmbHJbwL2pfvBfjjwTOA5/byX\nAof1wfJQ4FjgWXXTfULuCOwPHAg8C9iY5JB5tvsI4PXAb9H99fFN4N0AVfWwfrH79t0J75mn9OcC\njwXuBxwBzNff/AxgPbBmbP1XAAcATwb+pK9jsX4H+A3g7sAvA6/u9+Vw4GTgecAvAW8DPpjklkn2\nBP4eeBdwO+DvgCctsJ0HAV+j+xyPA85Mcjvgg8Bdk9xrzj6+c+4KkuwD/A3w2KpaA/wn4II52/hy\nv40/BU5Kkn7eKcANwD2Aw4HHAL87dxtVdXfgW/R/RVbVTxfYL60mVeWjsQdwGbAFuA74OXAVcFg/\nbzfgZ8ChY8s/DxiNvX4QcC1doB4zNn2WLjT2GZv2XuAP++enAMf3z08C/nRsuVv3taztXxdwj+3s\nw8eB5429flT/nt371yPgj8fm3xm4EVgzNu31wClzaxvblyvmfGbPH3v9OOBr/fO3AK+bU9+X6X5x\nPqz/fDM271Pj25rzvmfPs/xngWeMbeuE/vmvAt8HbjnPevbpj++TgL3m2cZXx17v3X92dwRmgJ+O\nvwc4Btg89t5PzvlcHrXS/6d97PjDln+7nlhV+9F1QbwA+L9Jtrba96AL9q2+SdeSB6CqzgG+DoQu\n3Md9v6p+NOe9B8yz/QPGt1FVW4B/Hd/OAg4ALh97ffk8y4xPOwC4tqqun1PbYrc3d33j+3Uw8NK+\ny+e6JNfR/bI5oH9cWX1Sjr13e+Zbfuu2TgV+u2+lPwN4b83T4u6PwVOB5wNX9yf1f2VskW+PLfvj\n/umt+33Zo3/P1n15G3CHBWrWTsbwb1xV3VhVZ9K1in8d+B5dC/zgscXuAly59UWS3wduSddCfdmc\nVd6273IYf+9V82z6qvFt9O/5pfHtLOBq4KCx1/ONVhoP0KuA2yVZM6e2rdv7EV0LeKs7zrO+8W2M\n79fldK3x/cYeewMXAq8BDhzrUtn63ptJcp8kn+pfzrf8VQBV9Rm6v8weCvw2XXfSvKrqw1X1aLpu\ntS8Bb9/WsmMup2v57z+2L7epql9dxHu1EzH8G9efqD0auC1waVXdSNeaPyHJmiQHA38AnNYv/8vA\n8cDT6VqeL0tyvzmrfW2SPftzAk+g6+ee6wzgOUnu158o/BPgnKq6rJ//HbpzDtvyXuDFSQ5Msh/w\n8u3tZ1VdTtfd8vokt+pPyB67db/o+sMfl+R2/V9AL5lnNb+f5KC+//1VwNZzEW8Hnp/kQf3nuU+S\nx9N1K72OrivsRUn2SPKbwAPnqe8ium6a+9G1srcu/xTgXsCHxhZ/J/Bm4OdVNe94/SQzSY7uf6n+\nlK6b79+39xn1dVwNfAT48yS3SXKLJHdP8vCF3qudi+Hfrn9MsgX4IXAC3UnbrUP2XkjXEv468Eng\nb4GT042kOQ14Q1VdWFVfAV4JvGtspMe36fqhrwJOp+sn/9LcjVfVPwF/CLyfrhV/d+BpY4u8Bji1\n73r4rXnqfztdSF0EfJ4uHG+g+wtmW44B1va1fQA4rq8Duhb0hXR92B/hpmAfd0Y/7+t0J2SP7/fl\nXLoT0G/u9/2rdN0tD+337zfp+sqvpeuKOXMb9Z1Od67hHOCedH+FnQA8uar+dWy5dwH35qZfXPO5\nBd0v7av67T4c+L3tLD/umcCewCX9/ryP7q8H7UJy865FaemSzAKnVdVBCy27hHW/HHgRcBu6QPvv\nVfWxJKfQjeD5Z+CtdCOMflFDkiPoTi7fAzibrvX7lap6dZLb0gXpg4Dd+3U8v6qu6N876qfNAg+m\nC/BbAH8E3J4unF9dVafPU+8zgWdW1aPGpm2zln7+gXS/OPabrx9/bD17AdcAR/S/gKUdZstfq14/\nVPQFwAOqG7b4G3QnJB9Hd9J5Dd2QyA/Med+e/bRT6IZZngH817FFbgG8g+7cw12An9C13sdtHS76\nLeAHbH/45LjD6Eb8LLYWqupKuvMt/2Fo7By/B3zO4Nckdl/pAqRFuJHuBPOhSb5bVZf11yecStdH\n/jO6cwB/RDfmf6tfo/s//jf96Jkzk3x268y+K2X8grUTgM1ztn1KVV3cn3+9ka61fu8k3+r7x6/e\nRs370Y1eWlQtY67v3zuvJJfR/cLzPjqaiC1/DaaqRtPo8qmqr9KdgH0NcE2Sd9N1jTyArp/8L6vq\nOVX1wzlvnW+Y5S+GaybZO8nb0l3F/EPgE8B+c65mvbyvYW1VncX2h0+O+z7dXySLqmXMGroTv/Pq\n6zi4qj6/rWWkxTD8tVOoqr+tql+n66Ip4A39rO0N0bya/zhscny45kvpulgeVFW3obsgC7qW9S82\nPaeOxQ6fvIjuKuDF1rK1z39PxrqLpGkx/LXqJTkkySP6EUX/Rtc3v3XY4vaGaH6arqvmBUl274e0\njg+zXNOv67p++OZxC9SxI8MnPwockZvu/7NQLdCNyPn49k72SkMx/LUzuCVwIt3omm/TjYN/RT9v\nm0M0q+pndMMsj6XrSnk6cBZdcAP8FbBXv97P0I3A2Z5FD5+squ/Q3YLi6EXWAt29g966QA3SIBzq\nqaYkOQd4a1W9Yxm2dSjdSekH1jw/aOO19Bedva2qHjztuiQw/LWL669M/TJd635ry/pu/UidZmuR\nHOqpXd0hdMNA96G7MvfJKxi2q6kWNc6WvyQ1yBO+ktQgw1+SGrSsff77779/rV27djk3uSJ+9KMf\nsc8++yy8oFY9j+Wuo5Vjed55532vqm6/0HLLGv5r167l3HPPXc5NrojRaMTs7OxKl6EBeCx3Ha0c\nyyQLfVMcYLePJDXJ8JekBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUHe1XMH3fxb+JbOG+qt\nPI+lWmbLfwdV1YKPg19+1oLLaOV5LNUyw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1aMHwT3Jy\nkmuSfHGeeS9NUkn2n055kqRpWEzL/xTgqLkTk9wZeAzwrYFrkiRN2YLhX1WfAK6dZ9ZfAi8DvMpF\nknYyS+rzT3I0cGVVXThwPZKkZbDD9/ZJsjfwSroun8Usvx5YDzAzM8NoNNrRTe6UWtnPFngsV78j\njzxysHVt3rx5sHWtZku5sdvdgbsCF/Y3xjoIOD/JA6vq23MXrqqNwEaAdevW1ezs7NKr3VmcvYkm\n9rMFHsudwmLusbR2wyYuO/Hxy1DNzmGHw7+qvgDcYevrJJcB66rqewPWJUmaosUM9TwD+DRwSJIr\nkhw7/bIkSdO0YMu/qo5ZYP7awaqRJC0Lr/CVpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalB\nhr8kNcjwl6QGGf6S1CDDX5IaZPhLUoMMf0lqkOEvSQ0y/CWpQYa/JDVoMd/kdXKSa5J8cWzaG5N8\nKclFST6QZL/plilJGtJiWv6nAEfNmfZR4N5VdR/gX4BXDFyXJGmKFgz/qvoEcO2caR+pqhv6l58B\nDppCbZKkKVnwO3wX4b8B79nWzCTrgfUAMzMzjEajATa5+rWyn6vVC7/5wkHWs+ZecNipGyZez5sO\nftMA1WhS/lzeZKLwT/Iq4Abg9G0tU1UbgY0A69atq9nZ2Uk2uXM4exNN7Ocqdv2GE7nsxMdPvJ7R\naDTxsVy7YROzz5psHRqAP5c3s+TwT/Js4AnAI6uqBqtIkjR1Swr/JEcBLwMeXlU/HrYkSdK0LWao\n5xnAp4FDklyR5FjgzcAa4KNJLkjy1inXKUka0IIt/6o6Zp7JJ02hFknSMvEKX0lqkOEvSQ0y/CWp\nQYa/JDXI8JekBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1yPCXpAYZ/pLUIMNfkhq0\nmC9zOTnJNUm+ODbtdkk+muQr/b+3nW6ZkqQhLablfwpw1JxpG4CPVdU9gY/1ryVJO4kFw7+qPgFc\nO2fy0cCp/fNTgScOXJckaYqW2uc/U1VX98+/DcwMVI8kaRks+B2+C6mqSlLbmp9kPbAeYGZmhtFo\nNOkmdwqt7OdqNsQx2LJlyyDr8f/D6uBxuMlSw/87Se5UVVcnuRNwzbYWrKqNwEaAdevW1ezs7BI3\nuRM5exNN7OdqNtAxGI1Gk6/H/w+rg8fhZpba7fNB4Fn982cB/zBMOZKk5bCYoZ5nAJ8GDklyRZJj\ngROBRyf5CvCo/rUkaSexYLdPVR2zjVmPHLgWSdIy8QpfSWqQ4S9JDTL8JalBhr8kNWjii7wkadru\n+9qP8IOf/Hzi9azdsGmi9++71x5ceNxjJq5jNTD8Ja16P/jJz7nsxMdPtI4hLtib9JfHamK3jyQ1\nyPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDXKc/5ihLiQBLyaRtLoZ/mOGuJAEvJhE0upnt48k\nNWii8E/yP5JcnOSLSc5IcquhCpMkTc+Swz/JgcCLgHVVdW9gN+BpQxUmSZqeSbt9dgf2SrI7sDdw\n1eQlSZKmbcnhX1VXAn8GfAu4GvhBVX1kqMIkSdOz5NE+SW4LHA3cFbgO+LskT6+q0+Ystx5YDzAz\nM8NoNFp6tctgiPq2bNkyyHpW+2e12nksdy2TfoYeyzmqakkP4CnASWOvnwn87+295/73v3+tZge/\n/KxB1rN58+aJ1zFULa3yWO5ahvgMWzmWwLm1iAyfpM//W8CvJdk7SYBHApdO+LtIkrQMJunzPwd4\nH3A+8IV+XRsHqkuSNEUTXeFbVccBxw1UiyRpmXiFryQ1yPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ\n4S9JDfKbvLTLGuzb0M6e/Cs5pdXG8NcuaYiv44TuF8hQ65JWE7t9JKlBhr8kNcjwl6QGGf6S1CDD\nX5IaZPhLUoMMf0lq0EThn2S/JO9L8qUklyZ58FCFSZKmZ9KLvP4aOLuqnpxkT2DvAWqSJE3ZksM/\nyb7Aw4BnA1TVz4CfDVOWJGmaJmn53xX4LvCOJPcFzgNeXFU/Gl8oyXpgPcDMzAyj0WiCTU7fEPVt\n2bJlkPWs9s+qFR6HlbfmXhs47NQNk6/o1EnrgNFon8nrWA2qakkPYB1wA/Cg/vVfA6/b3nvuf//7\n12p28MvPGmQ9mzdvnngdQ9WiyXgcVochjkMrP5fAubWIDJ/khO8VwBVVdU7/+n3AEROsT5K0TJYc\n/lX1beDyJIf0kx4JXDJIVZKkqZp0tM8LgdP7kT5fB54zeUmSpGmbKPyr6gK6vn9J0k7EK3wlqUGG\nvyQ1yPCXpAYZ/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalBhr8kNcjwl6QGGf6S1CDDX5IaZPhL\nUoMMf0lq0MThn2S3JJ9PctYQBUmSpm+Ilv+LgUsHWI8kaZlMFP5JDgIeD/yfYcqRJC2HSVv+fwW8\nDPj3AWqRJC2TJX+Hb5InANdU1XlJZrez3HpgPcDMzAyj0Wipm1wWQ9S3ZcuWQdaz2j+rVngcVodJ\nj4M/lzc3yRe4PwT4L0keB9wKuE2S06rq6eMLVdVGYCPAunXranZ2doJNTtnZmxiivtFoNPl6BqpF\nE/I4rA4DHAd/Lm9uyd0+VfWKqjqoqtYCTwM+Pjf4JUmrk+P8JalBk3T7/EJVjYDREOuSJE2fLX9J\napDhL0kNMvwlqUGGvyQ1yPCXpAYZ/pLUIMNfkho0yDj/XcWae23gsFM3DLOyUyetBbobpkoCWLth\n0+QrOXuydey71x6T17BKGP5jrr/0RC47cfLAHeIeIoP8R5d2EUP8XK7dsGmQ9ewq7PaRpAYZ/pLU\nIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalBSw7/JHdOsjnJJUkuTvLiIQuTJE3PJBd53QC8tKrOT7IG\nOC/JR6vqkoFqkyRNySRf4H51VZ3fP78euBQ4cKjCJEnTM8jtHZKsBQ4Hzpln3npgPcDMzAyj0WiI\nTU7NEPVt2bJlkPWs9s+qFR6HXYfH8iYTh3+SWwPvB15SVT+cO7+qNgIbAdatW1eT3vNmqs7eNPE9\neWCYe/sMVYsm5HHYdXgsb2ai0T5J9qAL/tOr6sxhSpIkTduSW/5JApwEXFpVfzFcSStrsLtpeutY\nSavYJN0+DwGeAXwhyQX9tFdW1YcmL2tlDHW7V28dK2m1W3L4V9UngQxYiyRpmXiFryQ1yPCXpAYZ\n/pLUIMNfkhpk+EtSgwx/SWqQ4S9JDTL8JalBhr8kNcjwl6QGGf6S1CDDX5IaZPhLUoMMf0lqkOEv\nSQ2a9Gscj0ry5SRfTbJhqKIkSdO15PBPshvwv4DHAocCxyQ5dKjCJEnTM0nL/4HAV6vq61X1M+Dd\nwNHDlCVJmqZJwv9A4PKx11f00yRJq9wkX+C+KEnWA+sBZmZmGI1G097kqtDKfu7MjjzyyEUtlzds\nf/7mzZsHqEaTGOpYQjvHc5LwvxK489jrg/ppN1NVG4GNAOvWravZ2dkJNrmTOHsTTeznTq6qFlxm\nNBp5LHcCHssdN0m3z+eAeya5a5I9gacBHxymLEnSNC255V9VNyR5AfBhYDfg5Kq6eLDKJElTM1Gf\nf1V9CPjQQLVIkpaJV/hKUoMMf0lqkOEvSQ0y/CWpQYa/JDXI8JekBhn+ktSgqd/bZ1eTZHHLLXAP\nkcVcji5J02LLfwdV1YKPzZs3L7iMJK0kw1+SGmT4S1KDDH9JapDhL0kNMvwlqUGGvyQ1yPCXpAYZ\n/pLUoCznBUdJvgt8c9k2uHL2B7630kVoEB7LXUcrx/Lgqrr9Qgsta/i3Ism5VbVupevQ5DyWuw6P\n5c3Z7SNJDTL8JalBhv90bFzpAjQYj+Wuw2M5xj5/SWqQLX9JapDhP5AkJye5JskXV7oWTSbJnZNs\nTnJJkouTvHila9LSJLlVks8mubA/lq9d6ZpWC7t9BpLkYcAW4J1Vde+VrkdLl+ROwJ2q6vwka4Dz\ngCdW1SUrXJp2ULqv3tunqrYk2QP4JPDiqvrMCpe24mz5D6SqPgFcu9J1aHJVdXVVnd8/vx64FDhw\nZavSUlRnS/9yj/5hixfDX9quJGuBw4FzVrYSLVWS3ZJcAFwDfLSqPJYY/tI2Jbk18H7gJVX1w5Wu\nR0tTVTdW1f2Ag4AHJrFbFsNfmlffP/x+4PSqOnOl69Hkquo6YDNw1ErXshoY/tIc/UnCk4BLq+ov\nVroeLV2S2yfZr3++F/Bo4EsrW9XqYPgPJMkZwKeBQ5JckeTYla5JS/YQ4BnAI5Jc0D8et9JFaUnu\nBGxOchHwObo+/7NWuKZVwaGektQgW/6S1CDDX5IaZPhLUoMMf0lqkOEvSQ0y/NW8JJcl2X8Hlp9N\nclb//JZJ/qkfDvrU6VUpDWv3lS5A2skdDtDfPkDaadjyV1OS7JNkU39/9y+OtdZfmOT8JF9I8itj\ny57c3w/+80mOnrOuOwCnAQ/oW/53X+bdkZbM8FdrjgKuqqr79t+7cHY//XtVdQTwFuB/9tNeBXy8\nqh4IHAm8Mck+W1dUVdcAvwv8v6q6X1V9bdn2QpqQ4a/WfAF4dJI3JHloVf2gn7715m3nAWv7548B\nNvS3Ax4BtwLusoy1SlNjn7+aUlX/kuQI4HHA8Uk+1s/6af/vjdz0cxHgSVX15fF1JJlZlmKlKbLl\nr6YkOQD4cVWdBrwROGI7i3+Y7lxA+vcevgwlSsvC8FdrDgM+23flHAccv51lX0f3tX8XJbm4fy3t\nEryrpyQ1yJa/JDXI8JekBhn+ktQgw1+SGmT4S1KDDH9JapDhL0kNMvwlqUH/H2K5VQC6aKs1AAAA\nAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.boxplot(by='shelf', column='sugars (g)');"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 1.7 Is there a relationship between sugar content and fat content? \n",
"Make a scatter plot to explore."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGWxJREFUeJzt3X9wHHd9//Hn+ywhC9uJjaw6xrJrg9wUlwiF3PCNCM4Q\naNMkZOy0Higtrvl++fIN8/3SEigzdsO335QyKQXTpg3THyQNKZgEGGqB0wYanAZnTL6JKWdjy4nd\nYE0dLBlHllU5SCArUu7dP+5s3xlJvpN2b1f5vB4zHt9+bu+z713tvfTR3t6uuTsiIvLyl0m6ABER\nqQ0FvohIIBT4IiKBUOCLiARCgS8iEggFvohIIBT4IiKBUOCLiARCgS8iEoi6pAsotXjxYl+5cmXS\nZYiIzBp79+495e7NlcybqsBfuXIluVwu6TJERGYNM/tRpfPqkI6ISCAU+CIigVDgi4gEQoEvIhII\nBb6ISCBiPUvHzJ4DhoCXgHF3z8a5PBERmVwtTsu8zt1P1WA5Iqk3MDxK7+AILYsaaZrfkHQ5EphU\nnYcv8nL20P7jbOnsoj6TYSyfZ+uGNta1L0u6LAlI3MfwHfhXM9trZrfGvCyR1BoYHmVLZxdnxvIM\njY5zZizP5s4uBoZHky5NAhJ34L/F3duBG4EPmtm1F85gZreaWc7Mcv39/TGXI5KM3sER6jPlb7f6\nTIbewZGEKpIQxRr47n68+P9J4BvAmyaY5153z7p7trm5ostBiMw6LYsaGcvny9rG8nlaFjUmVJGE\nKLbAN7N5Zrbg7GPgeuDpuJYnkmZN8xvYuqGNufUZFjTUMbc+w9YNbfrgVmoqzg9tlwDfMLOzy/my\nuz8S4/JEUm1d+zKuaV2ss3QkMbEFvrv/B/CGuPoXmY2a5jco6CUx+qatiEggFPgiIoFQ4IuIBEKB\nLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ\n4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEgg\nFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoGIPfDNbI6Z/cDMHo57WSIiMrlajPBvAw7XYDkiIjKF\nWAPfzFqAdwD3xbkcERG5uLhH+H8FbAbyMS9HREQuIrbAN7ObgZPuvvci891qZjkzy/X398dVjohI\n8OIc4V8DrDOz54CvAm8zswcunMnd73X3rLtnm5ubYyxHRCRssQW+u9/u7i3uvhJ4N/Add98Y1/JE\nRGRqOg9fRCQQdbVYiLs/Djxei2WJiMjENMIXEQmEAl9EJBAKfBGRQCjwRUQCocAXEQmEAl9EJBAK\nfBGRQCjwRUQCocAXEQmEAl9EJBAKfBGRQCjwRUQCocAXEQmEAl9EJBAKfBGRQCjwRUQCocAXEQmE\nAl9EJBAKfBGRQCjwRUQCocAXEQmEAl9EJBAKfBGRQCjwRUQCocAXEQmEAl9EJBAKfBGRQCjwRUQC\nocAXEQmEAl9EJBAKfBGRQMQW+GY218z+zcwOmNkzZvYncS1LkjMwPMqBntMMDI8mXUps0rqOaa2r\nu2+I7bkeuvuGki5FLlAXY9+jwNvcfdjM6oEnzOxf3H1PjMuUGnpo/3G2dHZRn8kwls+zdUMb69qX\nJV1WpNK6jmmt644dB9m259i56U0dK/jE+isSrEhKxTbC94Lh4mR98Z/HtTyprYHhUbZ0dnFmLM/Q\n6DhnxvJs7uxK3WhzJtK6jmmtq7tvqCzsAbY9dUwj/RSJ9Ri+mc0xs/3ASeBRd//eBPPcamY5M8v1\n9/fHWY5EqHdwhPpM+e5Tn8nQOziSUEXRS+s6prWu/T2nq2qX2os18N39JXdvB1qAN5nZ6yeY5153\nz7p7trm5Oc5yJEItixoZy+fL2sbyeVoWNSZUUfTSuo5prat9+cKq2qX2anKWjrufBnYBN9RieRK/\npvkNbN3Qxtz6DAsa6phbn2Hrhjaa5jckXVpk0rqOaa2rdckCNnWsKGvb1LGC1iULEqpILmTu8RxW\nN7NmYMzdT5tZI7AT+LS7PzzZa7LZrOdyuVjqkXgMDI/SOzhCy6LGxAMnLmldx7TW1d03xP6e07Qv\nX6iwrwEz2+vu2UrmjfMsnaXAF81sDoW/JL42VdjL7NQ0vyFVYROHtK5jWutqXbJAQZ9SsQW+u3cB\nV8bVv4iIVKfiY/hmNq84WhcRkVlo0sA3s4yZ/Y6ZfdPMTgL/Dpwws0Nm9hkza61dmSIiMlNTjfB3\nAa8Fbgcuc/fl7v4LwFuAPcCnzWxjDWoUEZEITHUM/1fdfezCRnf/T6AT6CxeMkFERGaBSQP/bNib\n2asmeHrI3ccm+oUgIiLpVMmHtvuAfuCHwJHi4+fMbJ+ZXRVncSIiEp1KAv9R4CZ3X+zuTcCNwMPA\n/wH+Ns7iREQkOpUE/tXu/u2zE+6+E+goXuY4fd/6EBGRCVXyxasTZrYF+Gpx+reAvuI5+fnJXyYi\nImlSyQj/dyhc7XIH8A1gebFtDvCu+EoTEZEoXXSE7+6ngN+f5OnuaMsREZG4TPVN2783swnvTVa8\nzML7zOw98ZUmIiJRmmqE/zfA/yuG/tMUTsecC6wGLgHuBx6MvUIREYnEVF+82g+8y8zmA1kKlzse\nAQ67+7M1qk9ERCJSyTH8YeDx+EsREZE41eQWhyIikjwFvohIIC4a+Gb2zkraREQk3SoZ4d9eYZuI\niKTYpB/amtmNwE3AMjP7bMlTlwDjcRcmIiLRmuosnR8DOWAdsLekfQj4SJxFiYhI9KY6D/8AcMDM\nvqwbnYiIzH6VXC1zpZn9GbCGwjdtAXD318RWlYiIRK6SD23/Afg7CsftrwO2AQ/EWZSIiESvksBv\ndPfHAHP3H7n7x4F3xFuWiIhErZJDOqNmlgGOmNnvAceB+fGWJSIiUatkhH8b8ErgQ8BVwEbgvXEW\nJSIi0ZvqPPwvufvvAm929+8Dw8D/qFllIiISqalG+FeZ2auB95nZIjN7Vem/WhUoIiLRmOoY/ueA\nx4DXUPjilZU858V2ERGZJSYd4bv7Z939dcD97v4ad19V8u+iYW9my81sl5kdMrNnzOy2SCsXEZGq\nXPRDW3f/39Psexz4qLuvAa4GPmhma6bZ15QGhkc50HOageHROLqftrTWFYIot3133xDbcz109w3N\nuK/c0QHu2vksuaMDM+4rSlHWFeW2T2tfs1Ulp2VOi7ufAE4UHw+Z2WFgGXAoyuU8tP84Wzq7qM9k\nGMvn2bqhjXXty6JcxMuqrhBEue3v2HGQbXuOnZve1LGCT6y/Ylp9bbxvD090FwL1s9/pZm1rE196\n/9XT6itKUdYV5bZPa1+zWU1ugGJmK4Erge9F2e/A8ChbOrs4M5ZnaHScM2N5Nnd2Jf4bPK11hSDK\nbd/dN1QW9gDbnjo2rZF+7ujAuVA967vdA4mP9KOsK8ptn9a+ZrvYA794E/RO4MPu/pMJnr/VzHJm\nluvv76+q797BEeoz5atQn8nQOzgyk5JnLK11hSDKbb+/53RV7VPZfeRUVe21EmVdUW77tPY128Ua\n+GZWTyHsH3T3r080j7vf6+5Zd882NzdX1X/LokbG8vmytrF8npZFjdMtORJprSsEUW779uULq2qf\nyrWrF1fVXitR1hXltk9rX7NdbIFvZgZ8Hjjs7nfFsYym+Q1s3dDG3PoMCxrqmFufYeuGNprmN8Sx\nuFlfVwii3PatSxawqWNFWdumjhW0LllQdV/ZVU2sbW0qa1vb2kR2VdMkr6iNKOuKctunta/Zztw9\nno7N3gJ8FzgInP31+jF3/9Zkr8lms57L5ape1sDwKL2DI7QsakzVDzGtdYUgym3f3TfE/p7TtC9f\nOK2wL5U7OsDuI6e4dvXixMO+VJR1Rbnt09pXmpjZXnfPVjRvXIE/HdMNfBGRUFUT+DU5S0dERJKn\nwBcRCYQCX0QkEAp8EZFAKPBFRAKhwBcRCYQCX0QkEAp8EZFAKPBFRAKhwBcRCYQCX0QkEAp8EZFA\nKPBFRAKhwBcRCYQCX0QkEAp8EZFAKPBFRAKhwBcRCYQCX0QkEAp8EZFAKPBFRAKhwBcRCYQCX0Qk\nEAp8EZFAKPBFRAKhwBcRCYQCX0QkEAp8EZFAKPBFRAKhwBcRCURsgW9m95vZSTN7Oq5liIhI5eIc\n4X8BuCHG/mWa7tl1hBvv3s09u44kXUqZ7r4htud66O4bmnFfO/b18P4vfp8d+3oiqCw6A8OjHOg5\nzcDw6Iz7yh0d4K6dz5I7OjDjvqLc9lF67NDzbNl+gMcOPT/jvtK6vaLcJy7G3D2+zs1WAg+7++sr\nmT+bzXoul4utHoHX/dG3GBk//zNvrDMO33lTghUV3LHjINv2HDs3valjBZ9Yf8W0+rr6k4/y/E9e\nPDe99JJX8NTHfm3GNc7UQ/uPs6Wzi/pMhrF8nq0b2ljXvmxafW28bw9PdJ8PrrWtTXzp/VdPq68o\nt32Urv/Lx/lh30/PTV++ZB7f/shbp9VXWrdXFPuEme1192wl8+oYfkDu2XWkLOwBRsY98ZF+d99Q\n2RsIYNtTx6Y1etqxr6cs7AFO/OTFxEf6A8OjbOns4sxYnqHRcc6M5dnc2TWtUV3u6EBZeAF8t3tg\nWiPXKLd9lB479HxZ2AM82/fTaY3007q9otwnKpV44JvZrWaWM7Ncf39/0uW8rO3oOlFVe63s7zld\nVftUHj44cSBM1l4rvYMj1GfK3271mQy9gyNV97X7yKmq2qcS5baP0s5DfVW1TyWt2yvKfaJSiQe+\nu9/r7ll3zzY3NyddzsvaLW1Lq2qvlfblC6tqn8rNV1xWVXuttCxqZCyfL2sby+dpWdRYdV/Xrl5c\nVftUotz2Ubp+zZKq2qeS1u0V5T5RqcQDX2rnA9etprHOytoa64wPXLc6oYoKWpcsYFPHirK2TR0r\naF2yoOq+bnnjcpZe8oqytqWXvIJb3rh8RjXOVNP8BrZuaGNufYYFDXXMrc+wdUMbTfMbqu4ru6qJ\nta1NZW1rW5vIrmqa5BWTi3LbR+ntay7j8iXzytouXzKPt6+p/hd3WrdXlPtEpWL70NbMvgK8FVgM\n9AF/7O6fn+o1+tC2Nu7ZdYQdXSe4pW1p4mFfqrtviP09p2lfvnDGgbNjXw8PH3yem6+4LPGwLzUw\nPErv4Agtixpn/MbOHR1g95FTXLt68bTCq1SU2z5Kjx16np2H+rh+zZJphX2ptG6vme4T1XxoG+tZ\nOtVS4IuIVEdn6YiIyM9R4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ\n4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEgg\nFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyISCAW+iEggFPgiIoFQ4IuIBEKBLyIS\niFgD38xuMLNnzazbzP4wzmWJiMjUYgt8M5sD/A1wI7AG+G0zWxPX8qJyz64j3Hj3bu7ZdSTpUsrk\njg5w185nyR0dmHFfDzx5lHd+7kkeePJoBJVFJ8p1HBge5UDPaQaGR1PVVwi6+4bYnuuhu28oVX1F\nabbuX+bu8XRs1gF83N1/vTh9O4C7/9lkr8lms57L5WKppxKv+6NvMTJ+fns01hmH77wpsXrO2njf\nHp7oPh+Ca1ub+NL7r55WX2/4+CO8cOalc9OXzp3DgY/fMOMaZyrKdXxo/3G2dHZRn8kwls+zdUMb\n69qXJd5XCO7YcZBte46dm97UsYJPrL8i8b6ilLb9y8z2unu2knnjPKSzDOgpme4ttqXSPbuOlIU9\nwMi4Jz7Szx0dKAtCgO92D0xrFPzAk0fLwh7ghTMvJT7Sj3IdB4ZH2dLZxZmxPEOj45wZy7O5s2ta\no6co+wpBd99QWUADbHvq2LRG51H2FaXZvn8l/qGtmd1qZjkzy/X39ydWx46uE1W118ruI6eqap/K\nQ5Osy2TttRLlOvYOjlCfKd+t6zMZegdHEu0rBPt7TlfVXqu+ojTb9684A/84sLxkuqXYVsbd73X3\nrLtnm5ubYyxnare0La2qvVauXb24qvaprJ9kXSZrr5Uo17FlUSNj+XxZ21g+T8uixkT7CkH78oVV\ntdeqryjN9v0rzsD/PrDazFaZ2SuAdwP/FOPyZuQD162msc7K2hrrjA9ctzqhigqyq5pY29pU1ra2\ntYnsqqZJXjG5jW9exaVz55S1XTp3DhvfvGpGNc5UlOvYNL+BrRvamFufYUFDHXPrM2zd0EbT/IZE\n+wpB65IFbOpYUda2qWMFrUsWJNpXlGb7/hXbh7YAZnYT8FfAHOB+d//TqeZP+kNbKBzL39F1glva\nliYe9qVyRwfYfeQU165ePK0gLPXAk0d5qOsE69uWJh72paJcx4HhUXoHR2hZ1DjjN1CUfYWgu2+I\n/T2naV++cMYBHWVfUUrT/lXNh7axBn610hD4IiKzSVrO0hERkRRR4IuIBEKBLyISCAW+iEggFPgi\nIoFI1Vk6ZtYP/CjpOoDFQPVf84yf6qqO6qqO6qpOWur6RXev6FurqQr8tDCzXKWnOdWS6qqO6qqO\n6qpOWuuaig7piIgEQoEvIhIIBf7E7k26gEmoruqoruqoruqkta5J6Ri+iEggNMIXEQmEAr9EWm+6\nbmbLzWyXmR0ys2fM7LakazrLzOaY2Q/M7OGkayllZgvNbLuZ/buZHS7ecjPpmj5S/Pk9bWZfMbO5\nCdZyv5mdNLOnS9peZWaPmtmR4v+LUlLXZ4o/xy4z+4aZ1fyi+BPVVfLcR83Mzaz6GzjUmAK/KOU3\nXR8HPurua4CrgQ+mqLbbgMNJFzGBu4FH3P2XgTeQcI1mtgz4EJB199dTuGT4uxMs6QvAhTcz/kPg\nMXdfDTxWnK61L/DzdT0KvN7d24AfArfXuigmrgszWw5cDxy78Lk0UuCf9yag293/w91fBL4KrE+4\nJgDc/YS77ys+HqIQXonfH9jMWoB3APclXUspM7sUuBb4PIC7v+juyd4br6AOaDSzOuCVwI+TKsTd\ndwP/eUHzeuCLxcdfBG6paVFMXJe773T38eLkHgp3z0u8rqK/BDYDs+LDUAX+ebPiputmthK4Evhe\nspUAhZvbbAbyF5uxxlYB/cA/FA833Wdm85IsyN2PA39OYSR4AnjB3XcmWdMElrj72RscPw8sSbKY\nSbwP+JekiwAws/XAcXc/kHQtlVLgzyJmNh/oBD7s7j9JuJabgZPuvjfJOiZRB7wR+Dt3vxL4Kckc\nnjineDx8PYVfRq8G5pnZxiRrmooXTt9L1ajVzP4vhcObD6agllcCHwPuSLqWaijwz6voputJMbN6\nCmH/oLt/Pel6gGuAdWb2HIXDX28zsweSLemcXqDX3c/+FbSdwi+AJP0qcNTd+919DPg68OaEa7pQ\nn5ktBSj+fzLhes4xs/8O3Ay8x9NxLvlrKfzyPlB8D7QA+8zsskSruggF/nmpvem6mRmF49GH3f2u\npOsBcPfb3b3F3VdS2FbfcfdUjFjd/Xmgx8wuLza9HTiUYElQOJRztZm9svjzfDvp+7D7n4D3Fh+/\nF3gowVrOMbMbKBw6XOfuP0u6HgB3P+juv+DuK4vvgV7gjcV9L7UU+EXFD4V+D/g2hTfi19z9mWSr\nOuca4HcpjKL3F//dlHRRKff7wINm1gW0A59MspjiXxvbgX3AQQrvvcS+qWlmXwGeAi43s14z+5/A\np4BfM7MjFP4i+VRK6vprYAHwaHHf/1xK6pp19E1bEZFAaIQvIhIIBb6ISCAU+CIigVDgi4gEQoEv\nIhIIBb5ITMzsFjOb8puYZtZsZo/UqiYJmwJfpErFK6tWYjPwt1PN4O79wAkzu2bGhYlchAJfZj0z\nm2dm3zSzA8Vrzf9Wsf25s9coN7OsmT1efNxcvN77M8ULq/2oZL4dZra3+NytJcsYNrO/MLMDQIeZ\nfap4f4IuM/vzCWr6JWDU3U8Vp19rZnvM7KCZ3WlmwyWz7wDeE9PmETlHgS8vBzcAP3b3NxSvNX+x\nQyR/TOFSEL9C4duvK0qee5+7XwVkgQ+ZWVOxfR7wPXc/e2393wB+pXiN9jsnWMY1FL5Ve9bdwN3u\nfgWFr+GXygFrL7aSIjOlwJeXg4MULgnwaTNb6+4vXGT+t1C44Bvu/ggwWPLch4qj+D0ULqa3utj+\nEoWL1wG8AJwBPm9mvwlMdH2XpRQu0XxWB/CPxcdfvmDekxSuoCkSKwW+zHru/kMKV8M8CNxZ8kHp\nOOf38YveTtDM3krhGjIdxZH8D0ped8bdXyoub5zCDXO2U7iC40R/UYxUssyS2kYqnFdk2hT4MuuZ\n2auBn7n7A8BnOH8p5OeAq4qPN5S85P8D7yq+9nrg7L1bLwUG3f1nZvbLFG4nOdHy5gOXuvu3gI9Q\nuIXihQ4DrSXTe0pquPDWhr8E/Ny9UkWipsCXl4MrgH8zs/0Ujs+fPab+J8DdZpajcEiGkvbrizek\nfieFuzsNURip15nZYQpXitwzyfIWAA8Xr8T5BPAHE8yzG7iyeClkgA8Df1B8TSuFw0JnXQd8s4r1\nFZkWXS1TgmNmDcBL7j5uZh0U7ozVHsNy7gb+2d3/tXiHpBF3dzN7N/Db7r6+ON9uYL27D07Vn8hM\n1SVdgEgCVgBfM7MM8CLwv2JazieB/1Z8fBXw18UR/2kK92bFzJqBuxT2Ugsa4YuIBELH8EVEAqHA\nFxEJhAJfRCQQCnwRkUAo8EVEAqHAFxEJxH8BuG+sA6XZpXoAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.plot(kind='scatter', x='sugars (g)', y=\"fat (g)\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.8 Create a pivot table to analyse contents by manufacturer and type of cereal (hot/cold)\n",
"Let's focus on protein and sodium contents."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" protein (g) | \n",
" sodium (mg) | \n",
"
\n",
" \n",
" mfr | \n",
" type | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" A | \n",
" H | \n",
" 4.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" G | \n",
" C | \n",
" 2.318182 | \n",
" 200.454545 | \n",
"
\n",
" \n",
" K | \n",
" C | \n",
" 2.652174 | \n",
" 174.782609 | \n",
"
\n",
" \n",
" N | \n",
" C | \n",
" 2.800000 | \n",
" 29.000000 | \n",
"
\n",
" \n",
" H | \n",
" 3.000000 | \n",
" 80.000000 | \n",
"
\n",
" \n",
" P | \n",
" C | \n",
" 2.444444 | \n",
" 146.111111 | \n",
"
\n",
" \n",
" Q | \n",
" C | \n",
" 2.285714 | \n",
" 105.714286 | \n",
"
\n",
" \n",
" H | \n",
" 5.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" R | \n",
" C | \n",
" 2.500000 | \n",
" 198.125000 | \n",
"
\n",
" \n",
" All | \n",
" | \n",
" 2.545455 | \n",
" 159.675325 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" protein (g) sodium (mg)\n",
"mfr type \n",
"A H 4.000000 0.000000\n",
"G C 2.318182 200.454545\n",
"K C 2.652174 174.782609\n",
"N C 2.800000 29.000000\n",
" H 3.000000 80.000000\n",
"P C 2.444444 146.111111\n",
"Q C 2.285714 105.714286\n",
" H 5.000000 0.000000\n",
"R C 2.500000 198.125000\n",
"All 2.545455 159.675325"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.pivot_table(values=[\"protein (g)\", \"sodium (mg)\"], index=['mfr', 'type'], margins=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.9 Which cereal has the heighest protein per cup ratio?"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"proteinPerCup = df['protein (g)'] / df['cups per serving']"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"12.121212121212121"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proteinPerCup.max()"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" mfr | \n",
" type | \n",
" calories (number) | \n",
" protein (g) | \n",
" fat (g) | \n",
" sodium (mg) | \n",
" dietary fiber (g) | \n",
" complex carbohydrates (g) | \n",
" sugars (g) | \n",
" shelf | \n",
" potassium (mg) | \n",
" vitamins and minerals | \n",
" weight (in ounces) of one serving (serving size) | \n",
" cups per serving | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 100%_Bran | \n",
" N | \n",
" C | \n",
" 70 | \n",
" 4 | \n",
" 1 | \n",
" 130 | \n",
" 10.0 | \n",
" 5.0 | \n",
" 6 | \n",
" 3 | \n",
" 280 | \n",
" 25 | \n",
" 1.0 | \n",
" 0.33 | \n",
"
\n",
" \n",
" 2 | \n",
" All-Bran | \n",
" K | \n",
" C | \n",
" 70 | \n",
" 4 | \n",
" 1 | \n",
" 260 | \n",
" 9.0 | \n",
" 7.0 | \n",
" 5 | \n",
" 3 | \n",
" 320 | \n",
" 25 | \n",
" 1.0 | \n",
" 0.33 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name mfr type calories (number) protein (g) fat (g) sodium (mg) \\\n",
"0 100%_Bran N C 70 4 1 130 \n",
"2 All-Bran K C 70 4 1 260 \n",
"\n",
" dietary fiber (g) complex carbohydrates (g) sugars (g) shelf \\\n",
"0 10.0 5.0 6 3 \n",
"2 9.0 7.0 5 3 \n",
"\n",
" potassium (mg) vitamins and minerals \\\n",
"0 280 25 \n",
"2 320 25 \n",
"\n",
" weight (in ounces) of one serving (serving size) cups per serving \n",
"0 1.0 0.33 \n",
"2 1.0 0.33 "
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[proteinPerCup == proteinPerCup.max()]"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Problem 2: Chocolate makes you faster?\n",
"Your colleague (a psychologist) has conducted an experiment where he measured subjects' performance on a memory and a reaction time task. He claims to have found a correlation between the two, but you are sceptical, because you know your colleague is not very good at clicking buttons in SPSS. Luckily, you can convince your colleague to give you his data file so you can assess his claims. \n",
" \n",
"> **1.** He gives you the file [experiment.csv](https://ucl-cs-grad.github.io/scipython/notebooks/day4/experiment.csv). It contains one line per subject, and each line contains the values for the following variables that he measured: `height`, `weight`, `amount-chocolate`, `task-one-score`, `task-two-score`. (He allowed the participants to eat chocolate during the experiment, and the third column shows the amount of chocolate they ate in grams.) Load the data into an array."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"col_names = [\"height\", \"weight\", \"amount-chocolate\", \"task-one-score\", \"task-two-score\"]\n",
"df = pd.read_csv(\"experiment.csv\", header=None, sep=' ', names=col_names)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"> **2.** As a sanity check, create a scatter plot of height vs. weight. These two should clearly be correlated and you should see a straight line relationship."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuUXVd93z+/8WPwjCyNZgSyjRzjGoyxrWJEIVo1jSeA\nUfPgZbWQNiSCuC6JSQYhGWxUpygL4xgnFo6SGAcHhFZxKKQEbBJiS1BUKKvQZmxjYVtINECxiQWS\nH4MlayTN/PrHPmfuuefue+e+z72j72et39I9557H3ueO9u/s32ubuyOEEELkGSi6AUIIIXoTKQgh\nhBBRpCCEEEJEkYIQQggRRQpCCCFEFCkIIYQQUTqmIMzsE2a238x2Z/b9WzN7yMxmzGxV7vj3m9k+\nM9tjZq/rVLuEEELURydnENuAf53btxt4M/C17E4zuxB4K3Bhcs5tZqbZjRBCFEjHBmF3/zrwZG7f\nHnffGzn8jcCn3f2Yu/8A+B7wyk61TQghxPz0ylv6WcCjme1HgecX1BYhhBD0joKIoRogQghRICcX\n3YCEx4CzM9srkn1lmJmUhhBCNIG7W6PnFKkgso29G/grM9tCMC29CPjfsZOa6WS/YGab3X1z0e3o\nFOpff7OQ+7eQ+wbNv1x3TEGY2aeBy4BlZvYj4APAE8CfAsuAvzOz+939l9z9YTP7LPAwcBy42lVm\nVgghCqVjCsLd/12Vr75Q5fgbgRs71R4hhBCN0ctO6hORXUU3oMPsKroBHWZX0Q3oMLuKbkAH2VV0\nA3oR6ydLjpn5QvZBCCFEJ2h27NQMQgghRBQpCCGEEFGkIIQQQkSRghBCCBFFCkIIIUQUKQghhBBR\npCCEEEJEkYIQQggRRQpCCCFEFCkIIYQQUaQghBBCRJGCEEIIEUUKQgghRBQpCCGEEFGkIIQQQkSR\nghBCCBFFCkIIIUQUKQghhBBRpCCEEEJEkYIQQggRRQpCCCFElI4pCDP7hJntN7PdmX2jZrbTzPaa\n2Q4zG8l8934z22dme8zsdZ1qlxBCiPro5AxiG/Cvc/uuA3a6+/nAV5JtzOxC4K3Ahck5t5mZZjdC\nCFEgHRuE3f3rwJO53W8AtieftwNvSj6/Efi0ux9z9x8A3wNe2am2CSGEmJ9uv6Uvd/f9yef9wPLk\n81nAo5njHgWe382GCSGKw8zWmI3tCGJrim6PCJxc1I3d3c3Max0S22lmmzObu9x9VzvbJYToLkEh\nLP48bDkt7Jl4lZm92d3vLbZl/YuZjQPjrV6n2wpiv5md4e6Pm9mZwE+S/Y8BZ2eOW5Hsq8DdN3e2\niUKI7jK6MSiHdemO02DDRkAKokmSF+dd6baZfaCZ63TbxHQ3pb+CdcAXMvt/zcxONbNzgRcB/7vL\nbRNCCJGhYzMIM/s0cBmwzMx+BPxn4Cbgs2Z2JfAD4C0A7v6wmX0WeBg4Dlzt7rXMT0KIBcMTt8DE\nq4DUxPQsTN1SaJMEANZP47CZubtb0e0QQrSX4IcY3Ri2nrhF/of20uzYKQUhhBALnGbHTiWjCSGE\niCIFIYQQIooUhBBCiChSEEIIIaJIQQghhIgiBSGEECKKFIQQQogoUhBCiBMaVZKtjhLlhBAnLKVK\nsluzZT4WXCVZJcoJIRYksTf89r31j24MymEdQbaeVir5IQpbD0IIIeajyloRN8Di67V+ROeRghBC\ndIzWi/DF1op4z3XwkTatH6FKsrWQghBCdIQOrhR3esuNS3D3e83szYmCAaZUSTaDFIQQokO0tlJc\nUDAjY7Ae2A2sBK4FXg1MzDLnQ23trT9RCFIKEaQghCgYrYVQSWn2cWsy+1gPXARsBx4H7nkANhwM\n3+mtv1NIQQhRIB00w/QArdj3K2YfwO0E5TDxLBza5P7MAnhGvY0UhBCF0poZppdpv31/70HYcJ9m\nDN1DCkII0TGat+9HZx+/nlcMMs91FmVSC1Eg/ZzJ2+nBeb7r9/Oz6zZak1qIPqUf34J7YXA2G9sB\nWy4vmee2Axt2uh98Xbfa0C80O3bKxCREwfRnmOXC9Z2IElIQQog2MXNueKuH7syElAXdaQoxMZnZ\nu4H/ABhwh7v/iZmNAp8BzgF+ALzF3Z/KnScTkzjh6QWTVGJiugu2DoY9G4AjwG3JEd0xOfXCs+gH\n+sYHYWYXA58GXgEcA+4Bfht4J3DA3W82s2uBpe5+Xe5cKQhxQtOI7b/zTuRFk7ByFZwF7AeuQv6A\n3qSfyn1fAHzL3Y+4+wzwP4C1wBsIf1Uk/76pgLYJ0ePUV546k4B3eZDFn2//YjiDB8O73eeA5e29\ntOgJivBBfAf4UGJSOgL8MvAPwHJ3358csx/9xQnRAqkT+QzgY8CFp8HuG2mrEznrAzgXmMh8J3/A\nQqDrCsLd95jZh4EdwCHgAWAmd4ybWdT2ZWabM5u73H1Xh5oqRA/SiGN2N/Be4I+S7YmXBbPQ4MF2\nmJwimdK7YMN48ln+gAIxs3FgvOXrFJ0HYWYfAh4F3g2Mu/vjZnYm8FV3vyB3rHwQYsFTX4JYbd9C\nOGbJl+BPBsr9AtcDK4AHp+HwG7PnFunwlbO5s/RVHoSZPc/df2JmPwdcAawmzFHXAR9O/v1CEW0T\nokjqKd5XT95EeLsfPUTF2gkrCH6DDYNgcyanIosGLuyChX2Ou3ddgK8BDxHMS7+Y7BsFvgzsJZif\nRiLneRHtlUi6JTC6Az7p4Il80mF0R3PXGp6EZck1Punh8z2Z645MdeK+RfZZUu0Z482cV8gMwt1/\nIbLvCeC1BTRHiJbovHlkeqxaAlrtex/aBH4X3D4I+4C3A9lAJllrayGzF8XMILqtBSWSTgmwBhYf\nLr2lLz4MrGnf9YaOwOIjsevXc+9wzOgOWPR05WxieLJT/WiuzxsdVjuMzACbFtLvWrQ0O3YW3vBu\ndFIi6ZR0wjxSGtRHd8DIZLXrN3LvcM2hI2EAXu0weDRce3RHucJJ79vdwRDYBItnemVAXmhmr2bH\nTtViEqLH8IwTumRaav2aZvZG2LsRpsdg8CK4dVX4tswpXJAZZXQctgyo+F9vIQUhREt0umBcrevX\nd++SLX00OWd0I2wZzA3Gd5qN3XfC2torUCFA6IE8iEZQHoToRYpcOKe5RXUGHgmzh2x+xO2E8Nfu\nrutQav/0GJx0Uan4X/GL/ywkJ3XfFOtrBSkIIRojvqjOu+6Dk15SUhrXAJ8iRDh1r8hepfK6ehpO\nfQgG2pLpLUr0VaKcEKJzlL/5zo5VHjF4EJ5ISmT4anj16aFe08cI+aqlczr7Fl2x6NAgbDioCrC9\ngxSEEAuIyqzkq6dhYhrImm7Sgf5es+fsg52nw9bkChPA9OL4tZThfKIhBSFEH1C/H2J4rFQOHIDB\nYFJaDwycAzM/LL/y8FLYQuZ4YMPS8G99y4o2P8uQI7jXkYIQosep9SYf+W42VHGFMI7fDpz6Ipg+\nFW4bBMZg4i6zRQ8FU9PMk2FfltmcEmmubfOd65XVYOV36DWKTuDoRrKHRNKrQh3JabWStuLfjcyE\nrORadZhWZzO1j2cS1I4Cm8J1hydzWdxHwr5sct3CSihbqNLs2KkZhBAF0UEb/wOw7RzYMlZuOvoY\npVpMZxG+2z0IH50NMw2A48DQZthySti++hisvy/57iK4rSy5LuRWiAVL0ZqtG1pQIulFqfftmxp1\ngap9F792OmtY7HCZwxUOF3j8uOz20qlqJT9qtU3SO9Ls2KkZhBB9wcAjsOEcmP4hHNrkySzDq9jx\nzYxyB/B7gfOBDyTXe0fy75cp+Syq8eLTYc8lsW+q3b+5PopeQwpCiMKYP4qnZIa6NT1mKH8Vj9RQ\nKg3c628ELoErB2AlsH4Wtg6Um57Wz8LKgeT6DlhImAO4lvB550BwgJMeN9fW2P3FwkAKQoguEAsF\nre/tu75Q0xg+l+tga2Bbcg8/F3hh7tAHYMPBpA27YOg/w/WDYfW57QS/xePATPa4npspLKTSGL2C\nFIQQHaaKM/oGGFkLoxVmo3ZTriiG7gqlNVImpmGq7N5mNhmWI526BB4fCEpi4tnQxmd6ctBVUl+H\nKNp50g1Hi0RSpFQ6jDc6LJ4tD0EdOkrEuUtDiwKN7mAuRLUybLbUjnsSB/VqD2GrbILRA0FKC/VQ\n4PoQrT9jhdvm/ka8mfM0gxCi63wD2GrlfoDbT4E9N5IxHZVMJrOPwLsIiW1TkSzqsjfny4MDeiXV\n36LXUCrM987FsPhDIZsaYOJDZoa73+jyLYiiNVs3tKBE0g6hyTdqKpbUXFoltHT0QOU51UJba604\nd0X0LTp+zaVTkTfvA+3qe7eee63nJWl+7Cy84d3opETSqrQ6AFG2pObGJBcha2Ja7OVrRMdNJpXt\nSLOmr0gk/Tx3zoFsO/ODbfi+toKot++dUCKNPPcilVivixSERNJBadXGHfdDjDis8JCsNnSkfCAf\nngyziisSn0GqIPLXWZtTNouTfani2Vhj9sGaRHHlzi/5Iertezve4GMDvHwL7fr7xZs5Tz4IITpE\nedjldK4g3kpCSsFPZ+HQITh1HxzOnLf4orDCG8DbgMPTcPiW0vVSHiOU6l6X2feeY/DYKaVFgFae\nBhs2huS58kgfmLoBpo/B9UlpjeljwGT1XqUFAFllZmt8zr/RfDhups8VUUgq5VEwBWmz9wMPEVI4\n/4pQq34U2AnsBXYAI+3SghJJq0KDb8iR44/A0Expe3n69j+bv2aVAnyT8euOzMRMRJVmp9jsIz22\n3tlBvgBgdmbS7hmWSnm0+e/XmzqvgIa+APhHYDDZ/gzhteNm4H3JvmuBm9rVSYmkGaHSHFNXOGk4\nNzrIT5WbjdLaSJ4bFGsPtpXtyDrAR2aAe2Nmo2YVROaeVY9tdSCvXbFWvoU2/C17U+cV0NBR4LvA\nUkKi3heBy4E9wPLkmDOAPe3qpETSqNQa8OoZDKvNAsrPWxJ5+x+ZrHL9GvkNWQd4qhA2Rq47tC+n\nOI7A4L7cuTWcwA0prpoDeVz5aqbQwb9nb+q8ghr7H4GfAT8B/kuy78nM95bdbrWTEkmjUt8aDOUJ\nZ6VzWRMZjA9XzkKG9lWu2TCcMSXlZwnxwbN65dbs9kgmgmrUYYnD0Gxp38hMqpyqP5PmBvF6lYFm\nCp38e8abOa/rTmozO4+w/uELgKeBvzazt2WPcXc3M69y/ubM5i5339WZlgqRUu6YDZPg3QRL6IeT\nYyYuCd8BLL4Ltg6GYzYAM7Mw9Zl8nSCzsR2w7oVwd3KNdcC2g5AvjzF6J5x/WphYr4G6HMD7KBXc\nmwDOGgjnryM4yK8Hbsgk660cgA0HvUZpCm+icmvM+Rwq095a4dB2P/i62n0S9WJm48B4yxeqQ/O8\nu559DWiytwJ/mdn+DeDPgUeAM5J9ZyITk6RAobZjdlMV53AV/8HFnjPjzIRrVLxJzwDbqs8clns2\n5LWyrdnjbkjuO5LMELL7V3spBLa8/e1/js37PSRt/Xv2ps6r48L3R/Y90EJDXwp8h1Di2AivOe8i\nOKmvTY65DjmpT2ihB8wN1HDMVllA50D8+BUe8TXMMJeHMDITBu18TkNMCa1Iz91U2daRyfDdWq+e\nsT2aVXYZ5dEZm39cQQxP1jaZFf/bLzRpu4IA/h3BgfxU8m8qu4CvtNjY91EKc90OnEKYt38Zhbme\n8BJ5sy7MYdlA+GUy2MaypIdnKn0WZ0YUyhW5AT0W5TS3lvRsiIoq9xtQ5rCudn52e6nP53voxG9Z\nTQn00m+/kKQTCuIcgg3rm8Blyedx4OXAyf3USUl/SbMx9Z1486w1YGXud6DcXLPRQ42j0QOlaqlD\nszlTlZfe9KspiJiyuSeR9FobHUYSZTE8GaKS0lDaG/LHeTA73ZN5rkv2df73bCS6SZnTHfoNvJnz\nqjqp3f2HwA+B1dWOEaJXaHU9gNhiM6V904+EuIqBsmqqPudIHtsBKy8vXW0lYN9MnK7J9Uf+E/zx\nUHnG8wcJ7re3EJzgzwBXZ77/FCECfMNB8MXwW6eEl++1wB8TnM7XArcacDpcsyoEBz4D/Bj478Br\ngN+dgoFFYSU5CJnZ6wiT92Nnl2dEtx9XVdj+pQ7Ns5YQEjFF+Ov7GTDVT1pQ0l9CE2aGVt48I/dL\nnMWNFImbLy9iJFI19ezkbb7MLzAbajPlazANT5ZmA+msIz/jyPsYUvNWzF9yXu768TUh+uG3l9T1\nXL2p8+q48P8FXlJ0B1vppKT/hAbNRa0kccXPjTp4D1TLos5dP/J9LOfhHI/7CUYqEteCDB0JJqJF\niSKoy8cwFe9ftuLrYD5nw4tXEnJSt/mZelPn1XHhbxTduVY7KVn4UuvNc7630vgAGos8Wp0ZQOPR\nP+X3yiagjUxG6iNViXoamazuwE1nE0P7YNHTuagnrwxdXbIv0n8Ps5TVHpROfWtCSPpXmh07LTm5\nAjNbm3z8BYKx8wvA0ZJlyv8mbrTqHGbm7m7dvq/obTK+grEQEDdwMLtoffARbLm8ZP/fDmzYmfoI\nEv/Fl0o2+vXAEuBJQqVUCOs4p9VRtxOS2z6XfH7XfWG1Nwht+PNVpaS0NJHu6ulQWeaqwbCi3J5Z\neOr3gcngO9ma+k6ehalGfCebYPENcLLBEMH/cGvy7XuAo/e5P/PyzOp0Y3B0JdyWVG+dcDjpKHxk\nMPd8DrofXFZPG0Tv0+zYWSuT+vVAqj2eBV6X+77rCkKcGMQcxrWPLXNOPwtPNbRYvQeH9O/D+g/C\nGQOhDPcfEKKwf5dQbPjMKmd/EThpVVjm8xuEkmJfJPzX+TAZp/QgvPN7cMc/SxTRAExcD1NvDrJh\nI8ycC7PPg9E7zWwLMFnrOSTPaRz8GXjH6cGhvZaQJQ0wTUg1yjvUbzsl0y6Ddw6GbOuUCWBqS2ZH\nQ7+JWEAUPfXpxjRJ0j9Cw2W1qyViNV4IjorEuGw4aeo3SENP05yH1Kyz3CtNODEfRqU5Kbn3ptJ1\nVzsMOyw+XjuZLNunZQ4XRto7tK96/9I2rPYQEnteYlob3NfKbyLpPWl27Kznwn9KmGf/aebzB4E3\n9ksnJf0jjUYjVR6/0WPVSYmuVpbuG5ksKZVsxE80SugAoRzGAVh0LAyoUUfzVGU7YtFEaUZ1mkuR\nKpp4KfDaz2lZtL2lvqalQ0YySmSpz1dyQ7kJ/S/Njp31FOt7DvBi4K8J89W1wPeBl5rZL7r7+gYm\nLEK0hXKb+tXTBDsQ8PHZYMJZlx4aLQRXaZq6hnDOR4/BxAxwUsglyHN8GkZ+E543AP8E/Dzw1VgT\n98HUpmxhO+DlMLGqdMi1wJUDsC055huUzFJ3U43gd1g6HvkmcvTsD8O/2RXflhKKCJ4PvBq4g5C7\nAYkP5JaqNxcnFnVonm+RyZwm+C2+mfz7SD9oQUn/CHXlFMRWa4vNALzKG3E1U0s6YxicgTM8lMRe\nkjfZeMkMlL7xx9aFfs6hytnK4sOl0NZsnsNIkm2dvtm7V5q30iKBaRnxiiKCDpd6LqfiSOn+sZlW\n9bDdRn8TSW9Ls2NnPRf+Lpm6SMAIsDf5XFHIrxc7KekvYZ44+Fomj/kGs9L3qQknWx9ppVeWtxj2\nkHuQHdCvyJyTbudDWFeX3b/U5ku95MtYnQzoc8oktxLc0JFSiGy6sE/W9HSDl/IhUtPa4L5SmGy+\nRlNaFHBjw4P8fL+JpLelkwriSoJJ6ZOJfB+4ChgG/qgfOinp+O/S1cGj2aS40sxhtcO6ZPDPv4Uv\n8cpr55PPUmUxmtmulYiW5jukSmStlxLxypzfR/Jv85UKLXuvqI8ktlxofsW5imqwvSBSQh19tt7U\neXVe/CzgTcAbgbP6rZOSjv4mXTc/VLtnrQEmco6Xm3TcS07bikE3p0TSJLnBRKHkzT1pUb30/Isz\n567NXC97j3SwH5ksb3eqDNPv7/F6HdmlfsfXrmjt+XevKKKkLc/XmzqvxgVfkvz7cmBV8m/6eVU/\ndVLSyd+kmAiX/CA1v2kp1s5FXukPWHQovMlnB/vBoxmzzabweelUmIGks4JLE0UwcryyAutKL59N\nDB+qvG9qmlp6vNx3kV3eNFUMaSTS8KFcKOyR/KAazp9fkTT23Ns/kCtSquP/X7yZ82pFMW1ITEm3\nUEqYy/KLNc4VoqN4rkJoki1dsYwlVauI7iYkxP12sv02Qh3KwadgdhG8ewYGZmB6P5w8lWZnh2Nn\nrw+Zz7sJEUBptvXELAx8G65aVb6M6CczzTjyJJw8Wn7fo4QktzuArSeFjVCNFrglLNO59bRw7PpZ\n4AF4alM4f+guuP2kkEE9cwqM3GhmeKka7Sq4lBAxlTIx23ykUjYaCqhr+VPRtxSt2bqhBSUd/U0a\nTGzrjJ25yhvogdwMY7Y8/j9/fDY/YJmHNRwGM47dtG7Rai+ZkDZ6SDBb7cnaD7n7LPeSQ3qxw5LZ\n+H1jZqes4z3mU4nNLrIRT9klU9M2VK5G19hvnfpwbvCSo354MnJcQ79xo39HkoZ/O2/qvDouPAz8\nPnBHsv0i4Ff7qZOSjv8udQ0InRwEyq+dXRynFLETEttS087ZkQE574xOo4w2emXIa3Z95xUOQ0eD\nghiehOGkZPd5HsxLFycKafBo3NxTLdmupOCqPPNksL40c+49ybWWHg3tvsfhsuQei55u9nlHfjvP\nFCzMhNM2/xt36uVB0lkF8VnC/PShZHsY+HY/dVLSG9JuO3N+QAkyPFlZ4fTiZLBdcqg8RDSfu5DP\nKF7tJYWSziLSUNZLk0H/Yg/KYCTZl11bOu+8HvHKCKblyfmxch1VK8bmQlbTch8VMwmH52a3Z2oo\nm5oDc/y3K4vU2tGJ31jSrv97eDPn1ZNJfZ67v8XMfi25yyEzFVQVxRJbQS4UvRs8CFsINvJ7Cfmc\n1wCMwdXHSkXpVhCK2b0POAZM7YM7Xggrkz/ua4DjlKK8nyJUOf1jgu/hy5RXen0N8BVC4YFnku/u\nTo5fl2n5e4ALKWUyvw34qMMdFlx+txOWZb8qORfI2PmTfn8Qbk0qz16btPHjlGdik1zrt7P3H8j7\nC1pdiU8sbOpRENNmNpRumNl5hP9ZQjTIE4nDlWxp66rO0toVRKs6SzN8jNwAfQpc/T3YsBT8tFCa\n4viz8OQkDL0WsFBm7EngecCvEAbe1wCPE8poryNUm9lK+cC/kVKZ7VrVZ14MPEQokPzgNHz3KJy6\nD55dDN94IZwELKJU+iLP6EbYMlB+79sB7oO95wBjNW4OsCo49NPnOXIj3FqH07nityMose2U/46N\n/cait6lHQXwA+HtghZn9FSEk4u2dbJRYmHiIrElKW6drN4xuTKNussc2/2abHaDytZR2A4PLgaNw\ndA8c2QRHgJEvwQUDpbfte4HNwGcozQzS8wEORu77IkqD7BcJSmIF5WW0ryUMqI8DNwE/PiWsw8Aq\nmJiG+2fh9GTwvyZz3nyD7J7ZUlTTxOeZG5wfnE7un9SpmgCuGgvrZ0+8ysxugJFLql+3RPlvBzC1\nC7aNJ5/L1unOHafS4P1MHbarTxHm4b8H/CqwrN/saJLeEuqqt1RPtnStFeTmVl5LHMMXe6ijVBal\nlJSySH0N+futjNj0U/9C1reQJsu5R2ooeakN2eS52Ip1SzM+kjln8xTESoWU+RU2lX+f98uM7ihl\ncpdd+2joT1kfo34KSX9Ls2NnPRd+NWEWsZNgjP0csL6fOinpLakekjpfYlu06N58ReZySW/ZQTob\n7ZMNNU2PjYXCjnkptDR1Xo96KUQ2VuMpm3y3MTk+du2lR+tx8Ob6XbPQXuXzzDuyl3mtkFXJwpCO\nKYjk4icDq8MfI/8P+G4LDX0xcH9GnibMfUcTJbQX2EGmQGCrnZT0lsQH/9WemwVsqowyYts8CmFT\nqe5RmvFcK/ImDVFdlAzwizxUcb0s85YdC0nN77vYYWgmVGod8xCVVBY95JRVYv2kxyvArvXc7KMi\nMzrX37pDSkvHxvq0et7zJf0tnZxBfIVQ3vsjBO/c89rY6AFCUf2zgZuB9yX7rwVualcnJZ2T+d7i\nq5+THdiWe6nkRDZcMhtWutYjCwFl3563VQ64Q5GktHQwTEt3L/FKk9Fzk/ak+Q/ZAXvwaOVMY2iG\nskqs1XIaUoWVvsXPJa8l/fOMYlqRXDck38Wf9/C8pc0rn/vSqUbyLZr9jSW9JZ1UEB8Bvp683f9B\nYnI6rU2Nfh3w9eTzHmB58vkMYE+7OinpjDTyBhs/t3pWbuUsIz/o5leOixXeW+7l5pQlHt7yl3qo\nY3ROMhCv8Er7/HKH0x3OdBiZLc1KWBMSztIEtcvSQT4z8MaqrK7w0uptse9jFWPLZ1aR5z0z32pw\nlc986EinZimS3pWOmpiSG5xOcFT/EJhuU6M/AVydfH4ys9+y2612UtIZaTUpqtaARYX/IF+KIq8w\nqpmDsr6ASzPfZc09WVt83j6fLVWRXdshn9hWc7EfzyS9eXy96jTZbbUHM9UNGUUxt7hPbE3riuVV\n5/+9ss+kts9BiW8LQ5odO+cNczWz3wP+FaGS6/eTQf3r851Xx3VPBV5PeRUx0p6YmVc5b3Nmc5e7\n72q1LaIY3P1es6UPwR+vysThD8KGO4H74MiP4PYXhmrzGygP/dwzSzBRJlxKeUjpBCFdZych3HVv\nco252ywPk+N1mX3XU55oBqVkt7sJBfM2bAyhtB9/TUhWS4/dTXn+w3FChRonl/SW7F+fnPN3wE8I\nCXYfBW5LjkkT9a4h5FdsGUvyHfI8ABuSuNt6Q0oT/ct2SueKhYSZjQPjrV6n3jWpbwHuc/djrd4w\nwy8Bk+7+02R7v5md4e6Pm9mZhP81Fbj75ja2QdSgdqIawBO7YOI1zA3UzSRFDWQGqHsJg+DQGLz1\n8rC+dDYT+EmSAe0+eOoxmHh76dx0XeUPJtuXA387GzKUt2ayo+8HvjILpeTPEocbaLcdgttPD9bQ\nNcm9B4D3Egb2RcArCS68fNLbKwiT5I8CQ4TMbwhZ1ncAyynlY/wtpWS/MwiZ1ykTz8LUpnqUQvgt\nh8dCJddGfi8lvvUjyYvzrnTbzD7Q7IWKmvL8V2BdZvtm4Nrk83XISV2oUPfSna1VCS2/TtYsM7fW\nc9SEUqpcHQqdAAAW90lEQVS5lOYwDHnOST0LS/bFTTlpuGm+ZlM+J6DCxHSE4AyfqTxmsUec1w72\ndGWV2LQeU62IomUefB15s1LZWtJNBAVsTH6rkcnGzpeTup+l2bGzqMYOAweA0zP7RgkFbhTm2gMy\nf6Ja+2zTzDmsY4Pl8GSVUteR4y8rs60HyS/MkzqD7/HgC1jmIUx18GhQANnIoguSa6ZF+Ab3xVdn\nW5EcF2v/yEypiuvFHsqHL56tnpyXDcMdmaQNTmL5ESTNjp31mJjajrsfApbl9j0BvLaI9ohicfd7\nzcbuI9iFMuyZhUOb3J+JmFBmf0hF3aExQh7nduDqxXDyeeUL8xx2+DkLptlvU6qdNDEL05thehK2\nbSxd7LqMb2Q7oYbT+Rm/R8qK5N67CZHgAOcm/14wAHsegL2JKe20Mbh1VTAX/RrlfpVrCIULUgYO\nukpXiCIpWrN1QwtKmnrWdZqY2hP+GLleHSUkslFOaXTQag+lLZZE3vSXZBbyyWdVx7K08/0b2hdm\nAWOeiUqaDZFYscS3dEnSajOv7CxmyaFwnfaHk7b7t5L0nzQ7dhbe8G50UtL0866wPef21VXmof77\nDE9m1n6uoozSshhL9pXuP5LUXMr6Hy6uYvJJt9OV4NIw0kpTVmVfswppxGF4hrnciJjJ6+JqivVo\nuaIaSkN7yzLBq/0G8/1G8WNGJsN1h+v2PUgWjkhBSLrx/Nv+JlrPNWssrXmkNKjmi+Fd4OUL86RJ\nap4cl/0uLahXTxs8c4+RqdKMptr35QqPudyPiz34LrJKpuI5bJp/Fjd0JOOor0h66/TsoR4FJSle\npCAkXXj+9VRYbbTsRj1F+dJjYhnISzIRRdmSHSMzJZPTFR4Sz9IoqfMi17m4zjZkjymrYZQfzI/E\nTEbV+hvfHy2LkXnew5PlkV/LvHJ96M45qGW66h9pduwsxEktFh6V6zdc/QshCW7gYMiXGB0P+2P5\nFBWsMrM1peOeuCXkW1wYcRCfNFDKRYCwjsODx+CUH8Kjz4Mfnw6/neRBHJ6G9Q8Bqyqv89Pc9mzO\nAf7ELpjIONFTh/IaCIvsjMMTGWfyzBjctqr2gkbzcnrtrwfPqVyxbsM5Dd6jBaou2iQn+kKhaM3W\nDS0oadvz31Q9LyHvfK1aamIeZ3e+rEX61j20DwZng+0/XYs5LXiXDQ1d5sEHkV5v6FilmWfRbOWb\n96Jcewf3lfc9WzzwPI/UQDpQfo9YiG1qjqp8647sn5lvrYZ4tdqR3Ayic2/5Cp/tH2l27Cy84d3o\npKQtz35TqThcZWJc+WCR5g1kB8fKBe4z184U7runbLArd05no4SWeqleUWrqWe5wtkfMUPsy99kB\nS4+XV4rd6HBWMvBfkMjogfI2NqQAcw7tkiO6vB0xZ3y+Uus9HnIsVnhInKtQrlkzVrTwXrX7teFv\nQiamPhEpCEknn/uaeIJYbIW3NMoo6xfIv+XHFsGptohQuq9aBdTFHpLPVnjwIyyKHDdyLMm8nokr\nm3wxvbU+/5v44NHgI0hXZavW7rk2NLQQT/nzLFNGkRlYcU7iou8vqft38mbOkw9ClBGvvzS6MZ4g\nVsLnEro+8ddw5emhuB2EBLWPA1dSucB9lljNn5lIMlyWRwm5dTsH4IZk3wTlRfs2AEdPhn++qryu\nE8B7ZoBZuOqU8mJ664FjZP0gXrGe9uBF8JHER3ANwey+hupka07NT+l+2+4Mhfrm2l1m50/aV5jN\nv+j7i84iBSHmqHQ0T7wqDFKjhGqp2cK7E7Pxgf7ocFAE6YB7DXD4IGxLtqe2hHuN7QjbTyTXGN0I\ns4/Au4DBg6VrT3weOC1kJl9NqaLpdwglu7YBF1LuqH535rhpQoXUVGGlrATcgN2wMue0XgFcswom\nPm9mb84qCeDe0PYtg+XK5u3ACPD4LDw1CROvpaUihrUyzIXoEkVPfboxTZLU+3yrhWDWV5gvHBtL\nUCtbsyAX/jl0JGdHL1tFjTkTxuC+SrNQdrW3bIjr4seCmWfR07D0UGjThV6e+5CavoYnqXCSl2dY\nkzOjVA95TQvxpSar5osYZv7mZeeXtCzNjp2FN7wbnZTU+3yrR6VUDpLp9shkKQs5jdyJDZ7Vtqsd\nn7e1x3ICYtedcwhvqhz413rwj1zilZFFozuCUslHJ+UVSCznIaucYjkWrUX25J990X8nkv6TZsdO\nmZhEhuq1/z1ja640RV1DMLfcMQ33H4OJU0omngcdfscaa8cgcOFpsPdOM/v15N7Pmf+8nxJyE3YO\nwl/8AVx4cjAt/UdKi/7cSmjb43P98znTka2BOxKT1jcIxQJ9cVgoqMwHMJ7kPNwJ548Fk1q6AE/7\n8Trs/POv3SFEExSt2bqhBSUNPeM6avvEZhpplNHQvvI8hMVHcxnF85iYnuvlUVBpnkDMxDQUKb53\nQ3J+WlojH0lVmbOQ638+16Pqus9EczgqivbVZRKq57nXPldmKEl1aXbsLLzh3eikpN2/Qy0FEQ/x\njJunstsjk6XyGNX8IINHQzjrCg+fB/cFs9JlXlrTOR9iO2dK8ngCXsU6E7GaSlXXfSZqamusiGGr\nA7wS1iTzSbNjp0xMognypqjUxDTxLAxEQlMHzoEn8ktj5k0giYln4M7K8+fCPl8PhxMzyvQuGE0W\nmX5/ctR/IJiQ1mXO/BjwBmD2Z7Dtm6VoospoLa9ulqm67rNXN//cWOVaEVSyQvQmUhCiYbwsJ2B2\nDI4B2yKhqRCUxzvG4I67zBY9FEJY4zby5Lq/Xn5+pR+k0gfyNsLg+myktT8GJqZh6t+m90zCVPMD\n8p0hpPSJx8rzKCaAqc+5ewMDfrfRutGiQxQ99enGNEnS9d+pSumM1XWZUJh3DYSYSWVFzv4/t27E\nIXJhprUrs47MVJbhaGf102olNlpdVlSRTpLq0uzYWXjDu9FJSRG/VTU/Rfq5+UG3elmO1P6fLatR\nzW9QLfchFnbbuoKYTwmUBvj4okkSSSsiBSHpKak9CMcT0MrPnW8VtVqDbT1rTFTLfdjotZRLvW2s\nPL7eNs23eJJmCpLGRQpC0nNSGsxGJnOhrjPAtjrLXjc8QMfLYMdnAVXuVzMKqRmTUH0Kop4FmRTO\nKmlcpCAkPS1h0B2ZKa3lEK8O22jIZl5RMBcOW5ZLES2DXe0a8/el/jaWm44WV6ww18h1Fc4qaVaa\nHTsVxXSCUHym7eg4bBkoRQ59o2Z12HqIFReE44/B0CnhPrcDe4EjB2v11ztUkTSyyt40rL8vVHad\nivwGikYSPUZB2mwE+G/AI8DDwM8TSobuJPyP3gGMtEsLnuhCC6YJWs7wTc/Nm33ySW3hLb+Rtsbf\nqJcejezzULhvZLLRPrTyPCvbt9FrZXEn196UHHOAiugrmZgkzUmzY2dRjd0O/Fby+WRgCXAz8L5k\n37XATe3q5IkuzZomWlcs2XOHjsDQ0WBiShf6ucFjq6XVq5TiA/DS45XhtRd7JsS2prmpgb/hBkuS\nVKxCV8UBLSe1pP3SNwoiUQb/GNm/B1iefD4D2NOuTi4kaWaAqLY+8vznNa5YMu2LRQdlaieNJgqi\nbM3lBktMZAfU/Cpx6drWz/V6VrTr3G+Vtm/+8Fn5GCSdkmbHziJ8EOcCPzWzbcBLgUnCEl7L3X1/\ncsx+YHkBbetpqi3o4zXs68k5F4XV1CBkHR+ehsMN2rbvJanQuiq70lrt9l1DWOtmDaE66lYrL4Nx\nPfBhmi0x4WUZ3ayCrWOV1/9NwoT1U5n9s2PZBYtqPb9WqGxfrdXxhOg9ilAQJxP+s/yuu/8fM7uV\nsDTYHO7uZuaxk81sc2Zzl7vv6lRDe49mavaMbqxc/Wz9Q+6H6hgUU6fp7tMyq8SN5Vdaq9E+YDOh\ntPaeWeZWWEs5dAw4Zf52zMfsGNhiuInyleUO/Qz+chh8ILRhOzBxDI5fBLcNhmPmV7Kt4GXlQeIl\nREo07qQuPvhA9CJmNg6Mt3yhAqY6ZwDfz2y/Cvg7gsP6jGTfmcjEFHl2zZh8WjNbMFc2Y/5rzJ/h\nPN/CO02ZmI6Um5WGPSm5kcmrGJ4M7UgrrhZjxqEuv0X9JkTktJbUKc2OnUU19mvA+cnnzQQH9c3A\ntcm+65CTOvbcmkjQakedn/qUzHz3ig1+jQyI9bVrtYfoqPgynwvJzr+Q+iLprPSbgngp8H+AbwN/\nQ3BcjwJfRmGu8z27JpzUrUW+NKJkWr1XY+2qpiBWVx0oF9JbtxSEpF5pduy05OS+wMzc3RtcvlK0\ng160dSdO8btga+JPuAY4DlwJbNvpfvB11c8r9SX821t9q4dSUMDWrM+iY/4U0b80O3ZKQYhCaVXx\nhPOX/BkMvDAEvv0KcEfdA2W/D7K9qLhF7yEFIfpusGjn4Nxs35PFgy4vRV5tBzZUnX0I0Y80O3aq\nFtMCoVaORO8qjvYttek16ilV63+yf1UzLRfiREAKYsEQH2zNjEaT6xYS1RRn+Lz48/CO04LvIkUF\n8oRIkYJY8LTvLb39tK96afVZUtX+U9p/OSHaeu9BmPr1E0V5CjEfUhALhmqDbTpo9h5eXoqCeAns\n+WmmBEk5awiZ1hvuk3IQooSc1AuA0tvz9FioXDFwMH2L7vconXqo5Wiu1v/weWE/FyFS5KQ+QYm8\nPT8LT80NdO16S+9XavX/RH4uQtSDZhB9TvztOV21DHoraqkznAizJCFaQTMIkeWSsLwnnAhRSyf6\nLEmITqEZRJ8TeXuehasGktLc9HPiV+/mbwjRX2gGcYJS+fY8MwYrC0n+qjWgNzrYtx6ZJIRoFc0g\nFhhF2eNr3beZNqkEhhDtQzMIARRpj6+VkNfLyXpCiGpIQSxAatUlqkbv2fvbl2UthGgOmZhEW8xS\n7TYxla7ZS0pLiP5E5b5F07TL3t9OJ7UQon3IByEKp5ZpqxmzlxCiWKQgTlByb/S7ZO8XQuSRiekE\npIpP4AYYHQ/bMgEJsZCQiUk0QDTsdFw5BkKILANFN0AIIURvohnECYlyDIQQ81OID8LMfgBMATPA\nMXd/pZmNAp8BzgF+ALzF3Z/KnScfRJtQ2KkQJw59lQdhZt8HXu7uT2T23QwccPebzexaYKm7X5c7\nTwpCCCEapNmxs0gfRL6xbyBkaJH8+6buNkcIIUSWohSEA182s38ws6uSfcvdfX/yeT+wvJimCSGE\ngOKc1Je6+z+Z2XOBnWa2J/ulu7uZRW1fZrY5s7nL3Xd1rplCCNF/mNk4MN7ydYpOlDOzDwDPAFcB\n4+7+uJmdCXzV3S/IHSsfhBBCNEjf+CDMbMjMTk8+DwOvA3YDd1PK3FoHfKHbbRNCCFGi6zMIMzsX\n+HyyeTJwp7v/YRLm+lng51CYqxBCtI2+CnNtFikIIYRonL4xMQkhhOgPpCCEEEJEkYIQQggRRQpC\nCCFEFCkIIYQQUaQghBBCRJGCEEIIEUUKQgghRBQpCCGEEFGkIIQQQkSRghBCCBFFCkIIIUQUKQgh\nhBBRpCCEEEJEkYIQQggRRQpCCCFEFCkIIYQQUaQghBBCRJGCEEIIEUUKQgghRBQpCCGEEFGkIIQQ\nQkQpTEGY2Ulmdr+ZfTHZHjWznWa218x2mNlIUW0TQghR7Azi3cDDgCfb1wE73f184CvJ9gmFmY0X\n3YZOov71Nwu5fwu5b61QiIIwsxXALwN/CViy+w3A9uTzduBNBTStaMaLbkCHGS+6AR1mvOgGdJjx\nohvQQcaLbkAvUtQM4iPAe4HZzL7l7r4/+bwfWN71VgkhhJij6wrCzH4V+Im7309p9lCGuzsl05MQ\nQogCsDAWd/GGZjcCvwEcB54DLAb+BngFMO7uj5vZmcBX3f2C3LlSGkII0QTuHn0hr0XXFUTZzc0u\nA65x99eb2c3AQXf/sJldB4y4+wnnqBZCiF6hF/IgUg11E3C5me0FXp1sCyGEKIhCZxBCCCF6l16Y\nQZRhZp8ws/1mtnue415hZsfN7Iputa0dzNc/Mxs3s6eTJML7zez6brexFer5/ZI+3m9m3zGzXV1s\nXsvU8ftdk/ntdid/o32T9FlH/5aZ2T1m9kDy+729y01smjr6ttTMPm9m3zazb5nZRd1uYyuY2dlm\n9lUzeyj5bSaqHLfVzPYl/XxZzYu6e08J8K+AlwG7axxzEvDfgb8F1hbd5nb2jxCPfXfR7exg/0aA\nh4AVyfayotvczv7ljv1V4MtFt7nNv99m4A/T3w44CJxcdLvb1Lc/An4/+fziPvztzgAuST4vAr4L\nvCR3zC8DX0o+/zzwzVrX7LkZhLt/HXhynsN+D/hvwE8736L2Umf/Go426BXq6N+/Bz7n7o8mxx/o\nSsPaRJ2/X8q/Bz7dwea0nTr690+EyEOSfw+6+/GON6wN1NG3lwBfTY79LvACM3tuN9rWDtz9cXd/\nIPn8DPAIcFbusLmEZHf/FjBiZlVzznpOQcyHmT0feCPw0WTXQnOiOPAvk+nfl8zswqIb1GZeBIwm\nU+F/MLPfKLpBncDMhoA1wOeKbkubuQO4yMx+DHybUDJnofBt4AoAM3slcA6wotAWNYmZvYAwW/pW\n7qvnAz/KbD9KjT6e3O6GdYFbgevc3c3M6OO37SrcB5zt7ofN7JeALwDnF9ymdnIKsAp4DTAE/C8z\n+6a77yu2WW3n9cD/dPenim5Im9kEPODu42Z2HrDTzF7q7j8rumFt4CbgT8zsfmA3cD8wU2yTGsfM\nFhEsLO9OZhIVh+S2q75k96OCeDnwX4NuYBnwS2Z2zN3vLrZZ7SH7H83d/97MbjOzUXd/osh2tZEf\nAQfc/VngWTP7GvBSYKEpiF+jz8xLdfIvgQ8BuPv/NbPvE+z1/1Boq9pA8n/vt9LtpG//WFyLGsfM\nTiHMWj/l7l+IHPIYcHZme0WyL0rfmZjc/Z+5+7nufi5BS/7OQlEOAGa2PJkZpdNcW0DKAeAu4FVJ\nufchgqPs4YLb1FbMbAnwC4S+LjT2AK+F8LdKUA59NYhWw8yWmNmpyeergP9R5Q28J0nGjY8DD7v7\nrVUOuxv4zeT41cBTXqqBV0HPzSDM7NPAZcAyM/sR8AGCWQJ3/4si29YO6ujfvwF+x8yOA4cJb6J9\nw3z9c/c9ZnYP8CChWOMd7t43CqLOv883Afcms6S+oo7+3QhsM7NvE14w39cvLzB19O1C4JNJSZ/v\nAFcW1dYmuRR4G/BgYiaDYBL8OZj7//clM/tlM/secAh4R60LKlFOCCFElL4zMQkhhOgOUhBCCCGi\nSEEIIYSIIgUhhBAiihSEEEKIKFIQQgghokhBCJFgZi+Yr8x87vh3zldLyszebmZ/WuW7TY22UYhu\nIgUhRJMkiUf/Zb7Danz3/na2R4h2IwUhRDknmdnHkgVX7jWz55jZeWb290n12a+Z2YsBzGyzmW1M\nPr/CzB5MFgr6o8xMxICzkvP3mtmHk+NvAk5Ljp9PyQhRCFIQQpTzIuDP3P1i4ClgLfAXwO+5+78A\n3gvclhzrlGYI24Cr3P1lwHHKZw6XAG8BVgJvNbPnu/t1wLPu/jJ3X5Alz0X/03O1mIQomO+7+4PJ\n50ngBYQKpn+d1FAEODV7QlKcb1GyAAvAXxFWk0v5Slql18weJqwzULWCphC9ghSEEOVMZz7PAMsJ\nFS9rr91bTr7efv6a+n8n+gKZmISozRTwj2b2byCUVDazf5753tz9aeBnSXl2qL8C7zEzk7IQPYsU\nhBDl5KOOnFBC+Uoze4BQBvoNkeOvBO5IyiwPAU9nvq8WyfQxQmlmOalFT6Jy30K0ATMbdvdDyefr\ngOXu/p6CmyVES2h6K0R7+BUzez/h/9QPgLcX2hoh2oBmEEIIIaLIByGEECKKFIQQQogoUhBCCCGi\nSEEIIYSIIgUhhBAiihSEEEKIKP8fryeLwFtm/SkAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.plot(kind='scatter', x='height', y='weight')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"> **3.** To assess your colleague's claim, first create a box plot of the scores in task 1 and task 2. Also, compute the correlation between the two (using Pearson's $r$) and check whether it is significant."
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pearson's r is 0.04231920574803165\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFt9JREFUeJzt3X90XGd95/H3Z+1gsw4kBIOIohCbxUlHFr/VlC4OlTCF\ndOHgdLtLLZtityqu2awKTXuiJNoD4bRqLXdPum1K13WQa0NtsaELTohTg2NryrolhATyQ/Zg8CGk\ncX4QQncpDtjE5rt/zLUZO2M7mhnNlef5vM6Zo3ufufc+z4ye+ejOo/tDEYGZmbW+f5N3A8zMrDkc\n+GZmiXDgm5klwoFvZpYIB76ZWSIc+GZmiXDgm5klwoFvZpYIB76ZWSJm5t2ASnPnzo158+bl3YyW\n8cwzzzBnzpy8m2H2HO6bjXXfffc9HREvO9Ny0yrw582bx7333pt3M1pGsVikp6cn72aYPYf7ZmNJ\neuT5LOchHTOzRDjwzcwS4cA3M0uEA9/MLBEOfDOzRDjwzaxpBgYGmD17Nr29vcyePZuBgYG8m5SU\naXVYppm1roGBAdatW8fIyAidnZ3s3buXwcFBAG6++eacW5cG7+GbWVPccsstjIyMcM011zB79myu\nueYaRkZGuOWWW/JuWjIc+GbWFIcPH2b16tUnlK1evZrDhw/n1KL0OPDNrClmzZrFunXrTihbt24d\ns2bNyqlF6fEYvpk1xQc+8IHjY/adnZ3cdNNNDA4OPmev36aOA9/MmuLYP2ZvuOEGDh8+zKxZs1i9\nerX/YdtEHtIxs6a5+eabOXToEOPj4xw6dMhh32QNCXxJ50v6O0nfkFSS9IuSLpC0Q9K3sp8vaURd\nZmZWm0bt4f85sD0ifg54HVACrgN2RsQCYGc2b2ZmOak78CWdB7wVGAWIiJ9ExP8DlgCbssU2AVfV\nW5eZmdWuEXv484HvAX8j6euSPiFpDtAWEU9kyzwJtDWgLjMzq1EjjtKZCbwRGIiIr0j6c04avomI\nkBTVVpa0ClgF0NbWRrFYbECTDODgwYN+P21act/MhyKq5vDz34D0CuDuiJiXzV9BOfBfDfRExBOS\nLgSKEXHZ6bbV3d0dvsVh4/g2cjZduW82lqT7IqL7TMvVPaQTEU8Cj0o6FuaLgb3A7cCKrGwFcFu9\ndZmZWe0adeLVALBZ0guAbwO/SfmPya2S+oFHgPc2qC4zM6tBQwI/Iu4Hqn2dWNyI7ZuZWf18pq2Z\nWSIc+GZmiXDgm5klwoFvZpYIB76ZWSIc+GZmifANUMxsykiqab16rwBg1XkP38ymTERUfVwyeMcp\nn3PYTx0HvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJ\ncOCbmSXCgW9mloiGBb6kGZK+LumObP4CSTskfSv7+ZJG1WVmZpPXyD38DwGlivnrgJ0RsQDYmc2b\nmVlOGhL4kjqAdwGfqCheAmzKpjcBVzWiLjMzq02j9vD/B3At8NOKsraIeCKbfhJoa1BdZmZWg7rv\neCXp3cBTEXGfpJ5qy0RESKp6VwNJq4BVAG1tbRSLxXqbZJmDBw/6/bRpy32z+Rpxi8O3AO+R9B+A\n2cCLJf0t8F1JF0bEE5IuBJ6qtnJErAfWA3R3d0dPT08DmmRQ/kD5/bRpafs2980c1D2kExHXR0RH\nRMwDlgK7IuJ9wO3AimyxFcBt9dZlZma1m8rj8NcAvyzpW8Dbs3lrgrGxMbq6uli8eDFdXV2MjY3l\n3SQzmwYaMaRzXEQUgWI2/X1gcSO3b2c2NjbG0NAQo6OjHD16lBkzZtDf3w9AX19fzq0zszz5TNsW\nMzw8zOjoKL29vcycOZPe3l5GR0cZHh7Ou2lmljMHfosplUocOHDghCGdAwcOUCqVzryymbW0hg7p\nWP7a29sZHBxk8+bNx4d0li9fTnt7e95NM7OceQ+/BUXEaefNLE3ew28xjz/+OBs3bmRgYIBSqUSh\nUGDt2rWsXLky76aZWc68h99iCoUC+/btO6Fs3759FAqFnFpkZtOF9/BbTG9vLyMjI4yMjNDZ2cne\nvXsZHBxk9erVeTfNzHLmwG8x4+PjDA4OsmHDhuNDOoODg2zdujXvpplZzjyk02JKpRKXXXbZCWWX\nXXaZD8s0M+/ht5r29nauvfZatmzZcvywzGXLlvmwTDPzHn4rknTaeTNLk/fwW0y1wzJHRkZ8WKaZ\neQ+/1RQKBTo6OpiYmGDnzp1MTEzQ0dHhwzLNzIHfaoaGhujv72d8fJwjR44wPj5Of38/Q0NDeTfN\nzHLmIZ0Wc+wSyJVDOsPDw740spk58FtRX18ffX19vsWhmZ3Agd8CajkKxxdUM0uPx/BbQERUfVwy\neMcpnzOz9DjwzcwS4cA3M0tE3YEv6WJJ45L2Stoj6UNZ+QWSdkj6VvbzJfU318zMatWIPfwjwO9H\nRCfwZuBqSZ3AdcDOiFgA7MzmzcwsJ3UHfkQ8ERFfy6Z/CJSAi4AlwKZssU3AVfXWZWZmtWvoGL6k\necAbgK8AbRHxRPbUk0BbI+syM7PJadhx+JLOBf438OGI+NfKY8MjIiRVPRZQ0ipgFUBbWxvFYrFR\nTTLw+2nTlvtm8zUk8CWdQznsN0fEZ7Pi70q6MCKekHQh8FS1dSNiPbAeoLu7O3xmaANt3+YzbW16\nct/MRSOO0hEwCpQi4qaKp24HVmTTK4Db6q3LzMxq14g9/LcAvwE8JOn+rOwGYA1wq6R+4BHgvQ2o\ny8zMalR34EfEbuBUF3NZXO/2zcysMXymrZlZIhz4ZmaJcOCbmSXCgW9mlggHvplZInzHKzOr2+s+\n9kV+8ONnJ7XOvOu2TWr58154Dg989B2TWsdO5MA3s7r94MfP8p0173rey9dyv+XJ/oGw5/KQjplZ\nIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJ8GGZZ4lajnMGH+tsZj/jwD9LTPY4Z/CxzmZ2Ig/p\nmJklwoFvZpYIB76ZWSIc+GZmiXDgm5klYsoDX9KVkvZJ2i/puqmuz8zMqpvSwJc0A/g48CtAJ9An\nqXMq6zQzs+qmeg//cmB/RHw7In4CfBpYMsV1mplZFVN94tVFwKMV8weAX5jiOlvSiwrX8ZpNNYyI\nbZpsPQCTO8HLrKb+6b7ZdLmfaStpFbAKoK2tjWKxmG+Dpqkfltaw8co5k1rn4MGDnHvuuZNaZ+X2\nZ/w7sEmbbP9038zHVAf+Y8DFFfMdWdlxEbEeWA/Q3d0dk70UQDK2b5v0ZRJqubRCLfWYTbbfuG/m\nY6rH8L8KLJA0X9ILgKXA7VNcp5mZVTGle/gRcUTSfwW+AMwANkTEnqms08zMqpvyMfyIuBO4c6rr\nMTOz0/OZtmZmiXDgm5klwoFvZpYIB76ZWSJyP/HKnr+abj+4ffL3tDWz1uTAP0tM9n62UP4DUct6\nZtaaPKRjZpYIB76ZWSIc+GZmiXDgm5klwoFvZpYIB76ZWSIc+GZmiXDgm5klwoFvZpYIn2lrZg0x\n6Ut/+LIfTefAN7O6TfYSHr7sRz48pGNmlggHvplZIhz4ZmaJqCvwJf2ppG9IelDS5ySdX/Hc9ZL2\nS9on6Z31N9XMzOpR7x7+DqArIl4LfBO4HkBSJ7AUWAhcCfyVpBl11mVmZnWoK/Aj4osRcSSbvRvo\nyKaXAJ+OiMMR8TCwH7i8nrrMzKw+jRzD/y3g77Ppi4BHK547kJWZmVlOzngcvqS7gFdUeWooIm7L\nlhkCjgCbJ9sASauAVQBtbW0Ui8XJbsJOw++nTVfum813xsCPiLef7nlJK4F3A4sjIrLix4CLKxbr\nyMqqbX89sB6gu7s7enp6zthoe562b8Pvp01L7pu5qPconSuBa4H3RMSPKp66HVgqaZak+cAC4J56\n6jIzs/rUe2mFvwRmATskAdwdEasjYo+kW4G9lId6ro6Io3XWZWZmdagr8CPi1ad5bhgYrmf7ZmbW\nOD7T1swsEQ58M7NEOPDNzBLhwDczS4QDvwWNjY3R1dXFI2vfQ1dXF2NjY3k3ycymAd/xqgVkh8RW\ntWfPHpYtW8ayZctOKP/ZOXJmlgrv4beAiDj+WLhwIbt27SIiGB8fJyLYtWsXCxcuPGE5M0uPA7/F\nlEolFi1adELZokWLKJVKObXIzKYLD+m0mEKhwMc+9jG2bt1KqVSiUChw1VVXUSgU8m6ameXMgd9i\nent7GRkZYWRkhM7OTvbu3cvg4CCrV6/Ou2lmljMHfosZHx9ncHCQDRs2HN/DHxwcZOvWrXk3zcxy\npun0D7zu7u649957827GWW3GjBkcOnSIc845h2KxSE9PD88++yyzZ8/m6FFfv86mh3nXbeM7a96V\ndzNahqT7IqL7TMv5n7YtplAosHv37hPKdu/e7TF8M3Pgt5qhoSH6+/sZHx/nyJEjjI+P09/fz9DQ\nUN5NM7OceQy/xfT19QEwMDBwfAx/eHj4eLmZpcuB34L6+vro6+s7PoZvZgYe0jEzS4YD38wsEQ58\nM7NEOPDNzBLRkMCX9PuSQtLcirLrJe2XtE/SOxtRj5mZ1a7uo3QkXQy8A/jnirJOYCmwEGgH7pJ0\naUT4VE8zs5w0Yg//z4BrgcprNCwBPh0RhyPiYWA/cHkD6jIzsxrVFfiSlgCPRcQDJz11EfBoxfyB\nrMzMzHJyxiEdSXcBr6jy1BBwA+XhnJpJWgWsAmhra6NYLNazOatw8OBBv582bblvNt8ZAz8i3l6t\nXNJrgPnAA9k9VTuAr0m6HHgMuLhi8Y6srNr21wProXy1TJ8Z2jg+09amre3b3DdzUPOQTkQ8FBEv\nj4h5ETGP8rDNGyPiSeB2YKmkWZLmAwuAexrSYjMzq8mUXEsnIvZIuhXYCxwBrvYROmZm+WpY4Gd7\n+ZXzw8Bwo7ZvZmb18Zm2ZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIhz4\nZmaJcOCbmSXCgW9mlggHvplZIhz4ZmaJmJLLI5uZAWQ3R6r+3Mip14uIUz9pNfMevplNmYg4/tiy\nZQvz589n165d7Nixg127djF//ny2bNlywnIO+6njwDezphgeHmZ0dJTe3l5mzpxJb28vo6OjDA/7\nthnN4sA3s6YolUocOHCArq4uFi9eTFdXFwcOHKBUKuXdtGR4DN/MmqK9vZ3BwUE2b97M0aNHmTFj\nBsuXL6e9vT3vpiXDe/hm1jQnj897vL65vIdvZk3x+OOPs3HjRgYGBiiVShQKBdauXcvKlSvzbloy\nvIdvZk1RKBTo6OhgYmKCnTt3MjExQUdHB4VCIe+mJaPuwJc0IOkbkvZIWltRfr2k/ZL2SXpnvfWY\n2dltaGiI/v5+xsfHOXLkCOPj4/T39zM0NJR305JR15COpF5gCfC6iDgs6eVZeSewFFgItAN3Sbo0\nIo7W22AzOzv19fUBnDCkMzw8fLzcpl69Y/gfBNZExGGAiHgqK18CfDorf1jSfuBy4Mt11mdmZ7G+\nvj76+vooFov09PTk3Zzk1Bv4lwJXSBoGDgF/EBFfBS4C7q5Y7kBW9hySVgGrANra2igWi3U2yY45\nePCg30+bltw383HGwJd0F/CKKk8NZetfALwZ+HngVkmvmkwDImI9sB6gu7s7/Fe/cbwXZdOV+2Y+\nzhj4EfH2Uz0n6YPAZ6N8MO09kn4KzAUeAy6uWLQjKzMzs5zUe5TOVqAXQNKlwAuAp4HbgaWSZkma\nDywA7qmzLjMzq0O9Y/gbgA2SJoCfACuyvf09km4F9gJHgKt9hI6ZWb7qCvyI+AnwvlM8Nwz4Mnhm\nZtOEz7Q1M0uEA9/MLBEOfDOzRDjwzcwS4cA3M0uEA9/MLBEOfDNrmrGxsRPuaTs2NpZ3k5LiO16Z\nWVOMjY0xNDTE6Ojo8Xva9vf3A/gSyU3iPXwza4rh4WFGR0fp7e1l5syZ9Pb2Mjo6yvCwz89sFge+\nmTVFqVRi0aJFJ5QtWrSIUqmUU4vS48A3s6YoFArs3r37hLLdu3f7nrZN5MA3s6bwPW3z53/amllT\n+J62+XPgm1nT+J62+fKQjplZIhz4ZmaJcOCbmSXCgW9mlggHvplZIlS+5/j0IOl7wCN5t6OFzAWe\nzrsRZlW4bzbWJRHxsjMtNK0C3xpL0r0R0Z13O8xO5r6ZDw/pmJklwoFvZpYIB35rW593A8xOwX0z\nBx7DNzNLhPfwzcwS4cBvEEnnS/ovNa77HUlzG90ms2Omun9K6pH072trnTWLA79xzgdq+kC1Ekm+\nAuv0NNX9sweY1oGvsqQzL+kX32BrgH8n6X5JfyZpp6SvSXpI0hIASXMkbZP0gKQJSb9euQFJL5T0\n95I+cPLGJV0gaaukByXdLem1WfmNkjZIKkr6tqTfrVjnfZLuydr015JmVNnuwoplHpS0ICt/fzb/\ngKRPZWXzJO3KyndKemVWvlHSOklfAdZmr3NDtt2vH3v9lqsp65+S5gGrgd/Ltv9Lkh7OAvZ8SUcl\nvTVb9kuSFpyqP59M0hpJe7Pl/ntW1ibpc1k7Hzj2zULSNVm7JyR9+FjbJO2T9ElgArhY0jskfTl7\n/Z+RdG4D3+fpLSL8aMADmAdMZNMzgRdn03OB/YCAXwNuqVjnvOznd7L17wLef4rt3wx8NJt+G3B/\nNn0j8E/ArKyu7wPnAAXg88A52XJ/VW3b2XaXZ9MvAF4ILAS+CczNyi/Ifn4eWJFN/xawNZveCNwB\nzMjm/xh4XzZ9fratOXn/jlJ+NKF/3gj8QcX89qwfvRv4KjCU9dGHT9efT9rmS4F9/OzgkvOzn/8L\n+HA2PQM4D3gT8BAwBzgX2AO8IWv3T4E3V7zeLx3rj8Ag8JG8fz/NengPf2oI+GNJD1L+kFwEtFHu\nkL8saUTSFRHxg4p1bgP+JiI+eYptLgI+BRARu4CXSnpx9ty2iDgcEU8DT2V1Lab8IfiqpPuz+VdV\n2e6XgRskDVI+PfvHlD+An8m2R0T8S7bsLwJbsulPZW065jMRcTSbfgdwXVZvEZgNvPIUr8uabyr6\n58n+D/DW7PEnlPvKz1MOfzh9fz7mB8AhYFTSfwR+lJW/Dfif2bpHs3YuAj4XEc9ExEHgs8AV2fKP\nRMTd2fSbgU7gH7P+uQK45Hm+prOeA39qLAdeBrwpIl4PfBeYHRHfBN5I+YP1R5I+UrHOPwJXShKA\npKuzr8f3S2o/Q32HK6aPUt6DE7ApIl6fPS6LiBsl/WrFdrsjYgvwHuDHwJ2S3lbja36mYlrAr1XU\n/cqIKNW4XWu8ZvTPL1EO3MuBOyl/0+uh/IfglCR9IdvmJyLiSLb+31H+prC9xtd7ct/cUdE3OyOi\nv8btnnUc+I3zQ+BF2fR5wFMR8aykXrI9iOyD8aOI+FvgTyl/uI75CPB/gY8DRMTHKzrl45Q/KMuz\n7fQAT0fEv56mPTuB/yTp5dk6F0i6JCI+V7HdeyW9Cvh2RPwF5b241wK7gP8s6aXH1s22+U/A0mx6\nOaf+8H4BGKgIhzecpp3WHFPdPyu3D3AP5X/i/jQiDgH3A79D+Q8BnKI/R8Q7s23+dja2fl5E3An8\nHvC6bN2dwAezdWdIOi/b3lWS/q2kOcCvUr1/3g28RdKrs/XnSLp0Eu/jWc2B3yAR8X3KXxMngNcD\n3ZIeAt4PfCNb7DXAPdlXyY8Cf3TSZj4EvFDS2ipV3Ai8KfsavobyV9HTtWcv8N+AL2br7AAurLLo\ne4GJrE1dwCcjYg8wDPyDpAeAm7JlB4DfzLb3G1l7q/lDyv9HeFDSnmzectSE/vl54Ni3xysi4jDw\nKOWAhXL4vojytwd4fv35RcAd2TK7gWsq2tGbtf8+oDMivkb5f0n3AF8BPhERX6/yPnwPWAmMZdv9\nMvBzVepuST7T1swsEd7DNzNLhAPfzCwRDnwzs0Q48M3MEuHANzNLhAPfzCwRDnwzs0Q48M3MEvH/\nAdPTuwV2VfeUAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print(\"Pearson's r is {}\".format(df['task-one-score'].corr(df['task-two-score'])))\n",
"\n",
"df.boxplot(column=['task-one-score', 'task-two-score'],return_type='axes');"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"> **4.** When your colleague hears about your results, he is a bit disappointed. However, he already has a new hypothesis: maybe chocolate is acting as a promoter somehow and the amount of chocolate consumed has some effect? Create some plots and hypothesis tests to assess this new hypothesis. "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pearson's r for task one is 0.0116431816265\n",
"Pearson's r for task two is -0.00551700962886\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuUZVV95z+/hn5VVVdXVSMPaQSCkqETJ4AJYQlm2mQE\nTFQivaJxmQRNxpk1maRd0pMAZRLJhCASmyRqnDUTtEVHME5AoskoD0P7jBrLbt5oYYAoBrTppotX\ndTX0b/7Y+/Y9955zbp1z7z33Uf39rLVXnbPPfvz2PueeX52992//zN0RQgghkizrtwBCCCEGDykH\nIYQQKaQchBBCpJByEEIIkULKQQghRAopByGEECkqUw5mdpyZ3W5m95jZ3Wa2OcZfZmbfN7MdMbw6\nkedSM5s1s/vN7JyqZBNCCNEaq8rOwcyOBo52951mNgbMAL8MvAF40t2vbkq/AbgO+BngWOA24GR3\nP1CJgEIIIXKp7MvB3R91953x+CngPsJLH8AyspwPXO/u+939IeAB4Iyq5BNCCJFPT+YczOwE4DTg\nazHqd83sDjP7kJlNxLgXAt9PZPs+dWUihBCih1SuHOKQ0t8Cb49fEP8TOBE4Ffg3YGuL7NrbQwgh\n+sDhVRZuZsuBG4D/4+43Abj7DxPXrwE+E08fAY5LZF8f45rLlMIQQog2cPesIf3cxJUEwrzCR4E/\nb4o/JnH8DuC6eLwB2AmsIHxZfJc4Yd6U36uSucvtv6zfMiwVOYdBRskpOQc9lH13VvnlcBbwa8Cd\nZrYjxk0DbzKzUwlDRg8C/yVKfa+ZfRK4F3gO+G2PLRJCCNFbKlMO7v5lsuc0PtsizxXAFVXJJIQQ\nohiykK6O7f0WoCDb+y1AAbb3W4CCbO+3AAXZ3m8BCrK93wIUZHu/BaiCyozgqsLM3MtMqgghhCj9\n7tSXgxBCiBRSDkIIIVJIOQghhEgh5SCEECKFlIMQQogUUg5CCCFSSDkIIYRIIeUghBAihZSDEEKI\nFFIOQgghUkg5CCGESCHlIIQQIoWUgxBCiBRSDkIIIVJIOQghhEgh5SCEECKFlIMQQogUUg5CCCFS\nSDkIIYRIIeUghBAihZSDEEKIFFIOQgghUkg5CCGESCHlIIQQIoWUgxBCiBRSDkIIIVJIOQghhEgh\n5SCEECKFlIMQQogUUg5CCCFSSDkIIYRIIeUghBAihZSDEEKIFFIOQgghUlSmHMzsODO73czuMbO7\nzWxzjJ8ys1vN7DtmdouZTSTyXGpms2Z2v5mdU5VsQgghWlPll8N+4B3u/hPAmcB/M7NTgEuAW939\nZODz8Rwz2wC8EdgAnAd80Mz0ZSP6gpmda7bulhDs3H7LI0Svqezl6+6PuvvOePwUcB9wLPA64NqY\n7Frgl+Px+cD17r7f3R8CHgDOqEo+IfIIymD8U3D1q0IY/5QUhDjUOLwXlZjZCcBpwNeBo9z9sXjp\nMeCoePxC4GuJbN8nKBMheszUFrh6NVxYi1gNF20Bbu6jUEL0lMqVg5mNATcAb3f3J83s4DV3dzPz\nFtkzr5nZZYnT7e6+vQuiCiHEksHMNgIb281fqXIws+UExfAxd78pRj9mZke7+6Nmdgzwwxj/CHBc\nIvv6GJfC3S+rSGQhgN1bYfPZwOpwvvlZmNvaV5GEKEn8p3l77dzM3lUmv7m3+se9fSx8IlwLPO7u\n70jEXxXj3mNmlwAT7n5JnJC+jjDPcCxwG/BibxLQzNzdDSEqJMwxTG0JZ7u3uruGlMRQU/bdWaVy\nOBv4InAn9eGhS4FvAJ8EXgQ8BLzB3Z+IeaaB3wSeIwxDpX6QUg5CCFGegVEOVSHlIIQQ5Sn77pQd\ngRBCiBRSDmJoyTNUkwGbEJ2jYSUxlNQN1d6XXFH0+nCcjteEsjjUKfvu7IkRnBDdJ9dQDRmwCdE5\nGlYSQgiRQl8OYkhpZagmAzYhOkVzDmJoyTNUkwGbEGlk5yCEECKF7ByEEEJ0jJSDEEKIFFIOolK6\nbZDWSXmDZBxXRpbmtK3yDmsbxQDi7kMVgsj9l0Oh0L06F8afgY94COPPAOf2o7xuy9KrfkmnHZmH\n8fmsvMPaRoWe3RMvlb7fAlfdQIV+3qupW8KLwWP4iMPULf0or9uy9Kpf0mnP9Ly8w9pGhV7dE7xM\neg0rCSGESNNvbVa19lPo673SsFKHsqTTalhJoe174mXSy85BVEq3DdI6KW+QjOPKyNKcNvzNzjus\nbRTVIyM4IYQQKWQEJ4QQomOkHIQQQqRYVDmY2dFm9iEz+1w832Bmv1W9aGKYGASDp7IyZKUvGtcd\nOcdmzCZnqu4zecwTbVFghvtzwBuBO+P5cuDuYZlxV+jJPen7ypSyMuSkny4Y14UVV1scjvCq+yyv\nXwbhnin0NpR9dxYp8Jvx745E3M5haaBCL+5J/w2eysqQk35XwbguGPJdkGvM1ot+GYR7ptDbUPbd\nWWTO4SkzW1c7MbMzgb2lPk+EEEIMFwW0zcuArxIUwleBWeCnhkX7KfTknvR9iKKsDDnpNaw0AM+T\nQjWh7LtzUTsHM1sFPA/8OGDAt4Fl7j7fDeVUFtk5DCaDYPBUVoas9EXjuiPnvnVhCm/Z41X2mTzm\nCajACM7MvuXupy8W1yukHIQQojxl352HtyjoGOCFwIiZnU74anBgHBjpVFAhhBCDS65yAM4B3gIc\nC2xNxD8JTFcokxBCiD6Tu1rJ3a9191cCb3X3VybC69z9xh7KONDIkGjpUIUBXCce3/LTjM2Yrdlr\nNjUXjOj03InuU2jjPTN7DbABWFWLc/f/UaFcrWQZmDmH8KMc/xS8b3WI2fwszL1eE3vDR869vBzG\n/6Dd+1vm+SiSNqQZ+Ts4fCWsAN4br2zeB3Pn67kTrSj97iyw/Ol/AR8Fvg+8C7gb+NCwLMeqVhYZ\nEi2VUMIorvD97czjWzptSHOmt/IGp6CQF8q+O4sYwb3c3X8D2O3ufwycSVjWKoQQYonSakK6xrPx\n7zNmdizwOHB0dSINE7u3wuazgeRQwNaWWcSAknkvr4bNf0Db97fM81Ek7e6tcOfPhWGl/56I37xP\nz53oNkXsHP4IeD/w88Bfxei/dvc/rFi2PHncB2TOAWRItJSowgCuE49vWWlDmtErwF4Myw18Fp6Y\n1nMnFqNST3DRWnqVuz/RjnDdYNCUgxBCDAPdNILbRDB6g7oBXO0aXmA5q5l9GPgl4Ifu/tIYdxnw\nn4AfxWTT7v7ZeO1S4DcJ23VsdvdbijZECCFE92g15/BaEgohgyK2DtsIQ1IfTcQ5cLW7X51MaGYb\nCH4jNhAM724zs5Pd/UCBeoQQQnSRVkZwb3H3t+aFIoW7+5eAPRmXsj5tzgeud/f97v4Q8ABwRpF6\nlgIypqvTqi+ar9WNwqbmzCaeDsZhYynDsHq+idmQZt0uM9vWbp+H8iZnQjnp+orlH4v5e2fIlid3\nO97ihvGZHUaZ+0aBtbETwJ8DMzFsBdaWWFt7AnBX4vxdwEPAHcCHgIkY/37gzYl01wCbOl2rOwwB\nbZ9cqC8yrs3DyoXGra+nHMYdRubz8x3hYcvscYdNpfs8ljffWF69vmL5R+abtuwunL/Dvs2SO3Nb\n8pL3YuCf2WGUucvt91LpCxR4I/DHwI8BJwGXATeWEKhZORxJ+HIw4HKiQV2Ocrig0wYOQ5AxXbG+\nyL62PsMgrGYo1ipfzRPbSaX7PLu8M0vm770hWwu5M439yt+LwX5mh1Hm7rYfL5O+iJ3DSe5+QeL8\nMjO7o0C+TNz9h7VjM7sG+Ew8fQQ4LpF0fYxLESe1a2x39+3tyiOEEEsRM9sIbGy7gALa5mvAKxLn\nZwP/VEJbnUDjl8MxieN3ANfF4w3ATsKmMScC3yUute1E+w1D4BD/3C3aFxnXNKxUvm81rDREMne5\n/V4qfYECTwXuBB6OYScF3YQC1wM/ABaA7xGWqX40lncHcBNwVCL9NGEi+v68m7YUlUNs17n1T/lD\n54Et2xfN10IYnYHJOVj7NIztDed5+dbOhjRTu4Bt7fZ5KG9iJpSTrq9Y/tGYf6J0/s76Ni13Xp+X\nuRf9fm46fbaWeij77ixsBGdma2PpewtlqAgZwQkhRHnKvjsX3XjPzN5tZhPuvtfd95rZpJld3pmY\nQgghBpkiu7K+2hPbZbj7HoLVsxBCiCVKEeWwLO6pBICZrSZMGoslQhWGQUXLrBtlrdlrNr5gNnXA\nbM1+M9vWiXxmNh0MvdbtMrNCbm27ZZhWb9PUXJ5RXrrOybmQfuUj4TjI3c1701TWdJse6qaLllG/\nB2v2BuPD3hieZRtKyvCtNAUmMS4GvgL8FmFPpK8AFw/LpIrCov3Z9RUcRcvk4OqZLd64cucIhxEn\nbL9SWj7C6pvkSiAn7OG1iMydryCqtynZlsbVU+k6p5pk3RKPRxzGF7pxbzL6MVFPfrmL5Msto34P\nmu9ttSuEMuSdD318aK5QauobL5W+YKGvJvgkfG+/O1bKodv92X3DoKJl1tPVDNKS6c90mFxoR74c\no65di8vcuWFavqFZ2kguv84L4nH3DOXyDQFbl7t4vuwy6vcg695WZ3iW3/+9qX+QQ9l3ZxEjOIAd\n1Dfp21EwjxBCiGGlgLZ5A8G+4aMxPAT8yrBoP4VF+1PDSgdl0bBSyXy5ZaBhpYELZd+dRQq8Ezgy\ncf4C4M5haaBCoT7tumFQ0TI5aJQ1thfWLMDkARjbD2zrRL7wcpraFY3dWiqGxno6N0yrt2lyLs8o\nL13nxFxIv+KRcBzk7ua9aSprumi5LfK1LKN+D8b2BuPD3hieNfdZFc/3MIay784ibkLvAv69x4Rm\ntgy4w6Pznl4jIzghhChP1zzBJfgccLOZXUfYSfWNwGfblE8IIcQQUOTLwYALCBvuOfAld/9UD2TL\nk0dfDkIIUZKub5/hgRvc/R3uflE/FYPoPe0Yk+WU044hW1eNl+oGZ2v2BoOzyTxPaDebTS2EYDen\njb7GZsxGZ0OfjEajtcm5GJcwvGrwuJZnPJZpSFbGkKt+j6bmzA7bFeSeeDopT2O6Yveyk/4vm3cx\nz3oyZOsDBSYxNgGzwBzwZAxzwzKpotBRX5de9ZNTTjsrjrq6ioqDK4PGm1fPNG1ZfZan25xcnbPJ\n62VkrbLaElcmNawySpS5Jee41VbZI/ONK6Aats6ezi/v4NbkzwDbytzLTvq/bF4W2QK928/CoRrK\nvjuLFPhd4JR+N6zdBip00tfljclyymnHkK2rxnl1g7NMw7JEO4/MuJ409DopUUaWgdcFGXUkzy/I\nOa63Md32fGO4Rtnz5PmIB4PC4veyk/4vm3cxz3qHuge3boWy784ieys96u73FfwQEUIIsRRooWU2\nxfCXwN8Ab0rEpXw7D6r2U+iorzWspGGl0v1fNi8aVurV79nLpM9drWRmHyGsToKwhLUhobu/tbQm\n6gJardRbwsTl1EXhbPfV7n5Fm+WcC1NbYjlb3f3mKvIsXt7oFWAvhuUGPgtPTLv7zU11OUy+Mhzv\nuR2m4vO2eztMbYR968DHYdUkzO+DFWvC9YXHYNWDsHtrOJ+4ApYdD/sehqdvCHmT5aSOD7axue3h\nb3Zf1O+Rr4C9C7B2HA7sh/0/qMkT21jqXnbS/2XzhvQN/TXd1MauPguHImXfnYU9wQ0KUg5CCFGe\nKjzBXWtmE4nzSTP7cLsCCiGEGHyKTEj/lKc9wZ1enUhCCCH6TZHtM8zMptx9dzyZAg6rViwxDCTG\nulfDs8DIs53MS2SUH8eZ962D5cCyx+P4+8sSY+efgalj4/H2ouP6i41hZ4yBt5gzmNiUHCsP8Ss/\nACPHw/79sOwJOGwN7HfwB+DpO2HtG2DZatj/LDz1p8191iRfSv7yfXhgHewHVj6e3x+jV8DK4+HA\nw/DEDU3tuqE+33L4OBw2CU/tg5E1sGyhm/c9px0N8yXAjOYgKqbADPdvAN8G/gS4PB7/xrDMuCtU\ndh8yVjLVVvKUX9GUUX5coZLa8nkhbGW96Mofb7G19HSr1S9kr56JZbSq5wiHkQVYvr8en9yO+wiH\nVRkrikYa+oz06pxm+dtcNXRE4h41tH26cbvyrFVPIzFv3vbi3bnvxZ617m1lfiiFsu/OooX+BPC7\nwO8AG4apgQpV3YcsA7mTvF1DuYzyF/ES5764QVmux7Is475b0nU313lBgXrO9PpLNivt+pz21Pus\nXa9t+X2YdY8a2r4r31AvKWNW3sZ+7c2z1j0PeYdSKPvuLDLngLvf4+7vB/a7+72lP0+EEEIMFyU1\nz45h034Kld0HDStpWMk1rDQ8oey7s5Sdg5ntcPfTOtZIHSA7h8FBE9K1Y01Ia0J68Om6EZyZ/Zi7\n/0s8Ps7dv5eM6zVSDkIIUZ6uG8EBN9QO3P178fD/lhVMCCHE8JBr52BmpwAbgLVmdgH1/ZXGgVW9\nEU8IIUQ/aPXlcDLwWmBt/Pua+Pd04G3Vi3boUMTLVVOaTO9hVdTfrgeuovmyPIDVPZbVvKuNzZhN\nzAZPZ2v2NnsKy/CalvJ4VvcCN/W02eT+UI5tC3HrdoXyx2ba6YNwfXTWbOq5UPaq2UXKaOv+Zbdz\nci54fhtN1Vm+3MmZvD7oFlV4dCt2f6r57SxpCsxwv7zfs+ydzLgPeqDAdsQZadpavVK2/iKytdum\nRLqmVUG1lT61uKmMlTPjXtvSOaOuxGqmg6totjWuxqmVO+LpurZ4mT4I10cWmlZUOaxcaFFG6fuX\nLmPlQsaKooWyz0K63CNSfdDLZ73bZTZez94ivd/vgF6Fsu/OIgUeCbwT+OvwI2Mb8OFhaeCghyJe\nrrplFFW2/nY9cBXNl52u9pJNxp2ZcR48heUbrCXPJxeyDafOzEhbMwAr1gd1D3PNadYvUka5+5cu\nI9eYrtSzkC9b9w3LqvDoVuz+1K5ne97r9zugV6Hsu7PI3kp/B3wRuBU4UPvgKJBPCCHEsFJA2+zs\nt8brRPsNekDDShpW0rBSZWWiYaVkX3mp9AUKvBz4pX43rN0GDkMID3BtiCT7YW1KM71Y+m7VX0S2\ndttUTzcxE/bPGZ2JL/zpcD4xByOzIX7tLEzOwdjeWrq8uur5p3YRrXZD/OgMTD4NE/tDOWwLcVO7\nQvmjM+30QVQQszD5XCh75ewiZbR1/7LbOTEXhs1GUnWWL3diJq8Pevmsd7vMKn87wxTKvjuLGME9\nBYwACwQTy1ol4y0zVoSM4IQQojxdN4Jz9zF3X+buq9x9TQyFFIOZfdjMHjOzuxJxU2Z2q5l9x8xu\nafIyd6mZzZrZ/WZ2TtFGCCGE6C5Fvhx+Live3b+4aOFmrwCeAj7q7i+NcVcBu9z9KjO7GJh090vM\nbANwHfAzwLHAbcDJ7n6gqUx9OQghRElKvzsLjFP9PfCZGG4F9gL/WGKc6wTgrsT5/cBR8fho4P54\nfClwcSLd54AzOx03G5ZAj8dFKTdO21KGVmnr10Zn4tzCwTQ0zg3cHMf+n4aV82EcfW3O2P3oTBxr\nn4vzD9P1uYOJmab+m84aT2+WmfTcR+Y9qNd/sK5EWSseCfMOkwfCcWMZ9Tom5mDV00H+kUdCmyef\ng1Xz4Vqy3Ik4TzK2H5bPh+PJuTCvMXULsC3MnzT2FxnzLok25MzJtH7+ijwTGf1YcLJ96pYg/9je\nLJnbeS4VUn3npdK3UcFxwI0l0jcrhz2JY6udA+8H3py4dg2wqdMGDkOgwtVIBetrscKjtQyt0tav\npbbdfia81LK2/E61v2nVz8g8qW2jR5rL9+ztug+uxJkP5dTSj8w3bgFdW8nU2KZ6/aktxOcztsJ2\nWOn5ddTaW2tL80qakYXG9GMZ5W+Kck41yZPVtweVwHTGtW2LPX9FngkyV5+FVWXFn8WD9+igzO08\nlwqZfe2l0rdRgQH3lUifqxzi+e74N0s5XNBpA4chVGnkVry+xTyhZctQzIguy/hociEdd1LL9mcb\nnNUM2Vr1X/PxR7zR+C3PQK6xTfkGb3le0tYvUkcyT3MfZbUzK39WfFbfBi9tZHrBy0rf2P9Fnol8\ng8T853cRI7xdZZ5bhcV+93iZ9IsawZnZ+xOny4BTgZnF8rXgMTM72t0fNbNjgB/G+EcIXyU11se4\nLJkuS5xud/ftHcgjhBBLDjPbCGxsu4AC2uYtwIUxvBk4q6S2OoHGL4eriHMLwCXAlfF4A7ATWAGc\nCHyXOGHeifYbhoCGlVzDShpW0rBS5e8ZL5W+YKErgZcCPwksLyHM9cAPCDYS3wPeCkwRViJ9B7gF\nmEiknwYeIExa572MSjVwWAKakNaEtCakNSFdYSj77iyylHUjcC3wcIx6EXChu3+hZcaK0FJWIYQo\nTxVuQr8FvMndvx3PTwY+4e6ndyRpm0g5CCFEeapwE3p4TTEAuPt3aOFBTgwn1Tn8aXTkU3X6VmU0\nOhFa+Ujdyc/obHP6JodB20LbJ2bNxp6OznUeSTrGKeIwJ51m+SPRQdABs9H5EH+w/sL3o7Hc0dnQ\nvjV7zUZ2BedDUwuhDZkyZjq/aeEgZ7qxjLGZ+vFkpY6CBpl+ODGqnALjVNsIy0o3Aq+Mx/LnsIQC\nhSaVy00CUnJysjvpVzZN4tbLoGEitnnyt7Yb68H02/LTHpFIW5u4HZlPy7LY7q7NE8zJyXKmS9yP\npsn15IRuauJ+f2O61CR63uSzZ0/w1+rIXHBwyMwHtPsb6UOZXip9gQJXAVuAG2N4B7CyjzeiVAMV\nivRprxz+5K957076fAc4jev7s+wukvYPyXX/i6W9wPPtLFr1Y8s8GbYIre5HlsOiIrYbWbYZeTYN\nWXYjZ3qj3OWekaUSqrC/qKZMvEz6RYeH3H0e2BqDEEKIQ4EC2ua1wA5gD/BkDHP909LltJ9CoT7V\nsJKGlQ7Wk1GHa1ipvd/PgJXpZdIXWa30XeD1wN3etENqP9BqpWoIE15TW8LZ7q3ufnORa4uXOXEF\nLDse9j0MT0+3ytuN9OFKdhlmNg1TF8GBFfDMkzC2Ep7fE9yUrJpMpq+nBdj9GZg6Fp4/EZ57IaxY\nDvt+BPYorHwcdsev6qktcGBdKC/EZ/djLc2+o2HNUeDLYGEBVtwDT9TqL3w/GuteGIcVR8FzDs/v\nh5VrwRz2fBz4RIaM22FqY3M9TXUk08TjWhkAywnHy4FlqXYfCrT7G+llmVUsZf0C8PPu/nwngnUL\nKQchhChP2XdnkSWpFwOfNbPbCZbOED5Prm5HQCGEEINPEeXwJ4R5hlWEfY+EEEIscYooh2Pc/VWV\nSyL6RmdzCqNXwMrj4cDDtfHyomU2pXkEpl4bj6929yvq1/etazWenU63HzjsaDjsBbD/WXjqPfXy\navMRT++B1XOhhGfHYfmRsNxg35Nw+Do4bEXM+6fufkV2PcseD3JPbgJWwTMPw75tMLEJnnsxHG7A\nLDxxA4xuCv303D44MBbqXfYUHDYB+1cAz8BTj8Hki4P8diDMRRx+APxB2Pvl0D++Ap55DEYfrM83\nZM27NN6XENfV8etEX/h4mLN5fg88N9d6vmXfOjh8HA6bXGxeqYpx/HYZJFl6RoEZ7qsYoJUHaLVS\nt/uzg9VIqR1KayuDiu7g+Uz2iqDkTqGtV8LUy6mla05/hIedS9lWX1GUrG+L13d1zc07na4nT+6V\nGeWkdk51mGyqZyymy2tH8yqhTZ7e6bW2YmtkIXvn2O6sfGnsi/EmOWurl4rszpu/Iq3d53KQfiOD\nFsq+O4sU+BRwAJhHS1mXXOjMyC3L0KodxzCtnAG1NrCql1NLl5W+lWFb0mAsL+/UrnQ9eXKvz4gv\n4rin5rSoVTuShmh5jn7Wtyi/3D1e/JkpawCY278pWaowAuv1b2TQQtl3ZxEjuDEzmwJeQph3EEII\nsdQpoG3eBtxFMIK7HXgW+Mdh0X4Ki/anhpU0rNTmM6NhpWEKZd+dRewc7gZ+Bvgndz/VzE4BrnD3\n13egk9pGdg7dRxPSmpAuiyakh29CugojuG+6+0+b2U7gTHefN7N73X1Dp8K2g5SDEEKUpwojuO+Z\n2SRwE3Crme0BHmpTPiGEEEPAol8ODYmDy9Bx4HPuvrBI8krQl4MQQpSnCk9wB3H37e7+6X4phmGn\n756dukC+F7Ls8+plafD6lvRYti3tya3msWx01mwienRb/kjw8LZuV4jP9uLWuu1jM6GMNXuDF7bJ\nmcbrae9w2WWNxbZkeYSrybzmebOJ50I9Nl2urxrvS5O3u+m8dC3yF/VWl/I2V+Y5WQq/myRD055+\nz6BXPeM+KIElsOIh3Ybmraqbz6trI6ktu6fiap+s1UjNK4qaVw7VVgElt+HOWxXV3Na81UUjCy22\n8W7ekns+rDJKrfyabr0Sa9yB6TafvW35K8Qa719O/oLbiqf6v2Xepfi7GZT2lH139r2zqm7goISl\nYEizuDezbKO43vVnzdCrlaFantFWsowLUrLntz3PaK2sp7csL3a1dK0M46Z2tddXSaPAVnG5Ro0F\nvdVly1z0OVkKv5tBaU/Zd2epYSUhhBCHCP3WpFVrv0EJLIHP43QbNKykYSUNKw3Le6Dsu7PUaqVB\nYJhXKy0RQ5ocL2TZ51W2McMT3A0Jj2VJo7roya3mvczHYfkLYdlyePJHMPpMMMqa3wOWacTVuu01\nw67nj0wYviUMz9Le4bLLShsU1tPNnxhkfn4VHOZgz8ATV3o00CvWV433pcnbXZPhYT1di/xFvdVt\nb/Y2V+a3sBR+N0n61Z6uG8ENGsOsHIQQol9UupRVCCHEoYGUgxBCiBRSDocAvTK6WczwqXvlj80E\nQ7HR2WAMVjfi6lDmZiO+zDYsnidtzNaZbIsa0RXu6wLGbEnjwel03lWzwXhwalEjvKEx9hLZ9Hv2\nvuoZ90M90KPVESy+QqWjOuvld7ZyZ5G+mW/a2jqxkil35U5TntT23JlbUpeXLW+1U/G+znkWEmVt\nyljZFfo05F25kHe9X8+dQqlnykul77fAVTfwUA+9MropYPjUUZ3FPL4tbhC2eN80e0y7oKENi+fp\njiFgdj1ZRnTF+3pxY7aTcvs05M021Ovnc6dQ5pnCy6TXsJIQQog0/dZmVWu/Qz2gYaUyfaNhJQ0r\nLdlQ9t0VIMPxAAAM9ElEQVQpO4dDgF4Z3Sxm+NS98mue2BbGYcVRsGyhZsTVoczNRnyZbVg8T83r\nW6N3vPZlW9SILlPOIu3NKCvlka8x78oPwMjxwDzsaWmEt9SM14YdGcEJIYRIISM4IYQQHVPETWgl\nmNlDwBzwPLDf3c8wsyngb4DjCa5I3+DuT/RLRiGEOFTp55eDAxvd/TR3PyPGXQLc6u4nA5+P56JD\nynj3KlHmdPB8NrUQvKCVM3prZcTVLeOpEp7KmozB0kZnresoZvSWbSw3ORcMylKe7Cppd9Vllq1b\nhnIDTB9nzh8E1jXF3Q8cFY+PBu7vdMb9UA/krBrJiy9Y5nRYlVNbLVRudRItVzZ1Z9vvVu3LuTbd\nYnVQi9U/I/MZW22n0qfb3LyqKbnleDXt7vYz1GndVciq0PI+eqn0fRT0X4AdwDeBt8W4PYnrljxv\nt4GHesgzRurESCkYTiWNvcoZvbU2mKvSiCzLU9nBaxneydIe4dJ1FJM33easfM0GeN1td7efoU7r\nlqFcb0PZd2ff5hyAs9z938zsBcCtZnZ/8qK7u5l5VkYzuyxxut3dt1cnphBCDB9mthHY2HYB/dZm\nUaO9C9hCGFY6OsYdg4aVutG3GlbSsJKGlRRKvzv7JeQIsCYejwJfAc4BrgIujvGXAFd22kCF2o+w\nNpTU7PoyHV+wzGkY2xuc0q+dDefFy2qquyFvJ3IVaXfetXrcxAyMzhSpP+QZnQnDUhMzi78Mk20e\nnYGJOZicC8fl+rCddlddZtm6q5BVIbevvUz6vhjBmdmJwKfi6eHAx9393XEp6yeBF5GzlFVGcEII\nUR5ZSAshhEghC2khhBAdI+UgUgyCYVIBj2UFjNMmoteyNXuDgVlv29Xt+qKR3K5gODc6267ntyoY\nhGdGdJl+T5JUPamiULp/+76CJEeG6aJyxfwLjSuPVnpjXLXt6nY/xvZ7+dVUvd6uXauOBjWUfXf2\nXeCqG6hQtn/7b5hU3EitjMezTC9mlbWr2/3YvpFe9W0ehGdGoch9wsuk17CSEEKINP3WZlVrP4XS\n/dv3IYIcGTSspGElhc7uk5dJr6WsIsUgePAq4LGsgMeztR+AZcfD/mfhqfcAM71sV7f70cymYeoi\nOLACFh6DVQ+24/mtExn6XY9oH9k5CCGESCE7ByGEEB0j5SCEECJFP7fsFkJEmsbst8PUxnis8XvR\nFzTnIESfCYph/FPwvtVwF/DXwPvi1c3PwtzrpSBEp2jOQYihY2pLUAwXErznvo9wfCEhvvZFIUTv\nkHIQQgiRQnMOQvSd3Vth89nAajgR2Jy4tvlZmNvaJ8HEIYzmHIQYADQhLapGRnBCCCFSaEJaCCFE\nx0g5CCGESCHlIIQQIoWUgxBCiBRSDkIIIVJIOQghhEgh5SCEECKFlIMQQogUUg5CCCFSSDkIIYRI\nIeUghBAihZSDGHrM7FyzdbeEYOf2Wx4hlgLaeE8MNY1e1ECe04TIpuy7U/4cxJAztQWujl7UAFgN\nF20BpByE6AANKwkhhEihLwcx5CS9qIE8pwnRHTTnIIaeJi9q8pwmRAbyBCeEECLF0HuCM7PzzOx+\nM5s1s4v7LY8QQhyKDJRyMLPDgA8A5wEbgDeZ2Sn9lao9zGxjv2UowjDIOQwyguTsNpKzvwyUcgDO\nAB5w94fcfT/wCeD8PsvULhv7LUBBNvZbgAJs7LcABdnYbwEKsrHfAhRkY78FKMjGfgtQBYOmHI4F\nvpc4/36ME0II0UMGTTkM1+y4EEIsUQZqtZKZnQlc5u7nxfNLgQPu/p5EmsERWAghhoihXcpqZocD\n3wZ+AfgB8A3gTe5+X18FE0KIQ4yBspB29+fM7HcI++IcBnxIikEIIXrPQH05CCGEGAwGbUK6JWa2\nxcwOmNlUIu7SaDB3v5md02f5/sTM7jCznWb2eTM7bkDl/DMzuy/KeqOZrR1QOX/FzO4xs+fN7PSm\nawMjZ5RnII03zezDZvaYmd2ViJsys1vN7DtmdouZTfRZxuPM7PZ4r+82s80DKucqM/t6/H3fa2bv\nHkQ5a5jZYWa2w8w+E8/LyenuQxGA44DPAQ8CUzFuA7ATWA6cADwALOujjGsSx78LXDOgcr6qVj9w\nJXDlgMr574CTgduB0xPxgybnYVGGE6JMO4FT+iVPk2yvAE4D7krEXQX8fjy+uHb/+yjj0cCp8XiM\nMO94yqDJGeUYiX8PB74GnD2IckZZLgI+Dny6nfs+TF8OVwO/3xR3PnC9u+9394cIP9Azei1YDXd/\nMnE6BuyKx4Mm563ufiCefh1YH48HTc773f07GZcGSk4G2HjT3b8E7GmKfh1wbTy+FvjlngrVhLs/\n6u474/FTwH0E+6aBkhPA3Z+JhysI/xTsYQDlNLP1wC8C1wC1FUql5BwK5WBm5wPfd/c7my69kGAo\nV6PvRnNm9qdm9q/AW4B3x+iBkzPBbwL/Lx4PspxJBk3OYTPePMrdH4vHjwFH9VOYJGZ2AuFL5+sM\noJxmtszMdkZ5bnf3exhAOYE/B34POJCIKyXnwKxWMrNbCZ+XzbwTuBRIjiu3Wqtb6Qx7Czmn3f0z\n7v5O4J1mdgnwF8Bbc4rqq5wxzTuBBXe/rkVRfZezIP1cWTG0qzrc3QfFdsjMxoAbgLe7+5Nm9Z/5\noMgZv7hPjfN0N5vZK5uu911OM3sN8EN335G371MROQdGObj7q7LizewngROBO+LDsh6YMbOfBR4h\nzEXUWB/jei5nBtdR/4984OQ0s7cQPjt/IRE9cHLm0HM5F6FZnuNo/LIZNB4zs6Pd/VEzOwb4Yb8F\nMrPlBMXwMXe/KUYPnJw13H2vmf0D8DIGT86XA68zs18EVgHjZvYxSso58MNK7n63ux/l7ie6+4mE\nH93p8fPo08CvmtkKMzsReAnBcK4vmNlLEqfnAzvi8aDJeR7hk/N8d59PXBooOZtIfi0OmpzfBF5i\nZieY2QrgjVHGQeXT1J1uXwjc1CJt5Vj4r+9DwL3u/heJS4Mm5xG1FT5mtpqwsGMHAyanu0+7+3Hx\nffmrwD+6+69TVs5+z6i3MQP/L8TVSvF8mjAheT9wbp9l+1vgLsJqlRuAIwdUzlngYcKDvQP44IDK\n+XrCWP6zwKPAZwdRzijPqwmrbB4ALu23PAm5rifsNrAQ+/KtwBRwG/Ad4BZgos8ynk0YG9+ZeCbP\nG0A5Xwp8K8p5J/B7MX6g5GyS+T9QX61USk4ZwQkhhEgx8MNKQggheo+UgxBCiBRSDkIIIVJIOQgh\nhEgh5SCEECKFlIMQQogUUg5iaDGztWb2X9vM+5Altn4XQjQi5SCGmUngt9vMu2QMfCy41xWiq0g5\niGHmSuCk6NDkajO7zcxmzOxOM3sdgJmNmtk/RActd5nZryQLMLPVZvZZM/ut5sKjc5dtsbxv1TYx\nM7O3WHCS9NnoOOU9iTznmNlXoxyfNLPRjHKPMbMvRrnvMrOzYvx5Md9OM7stxk2Z2U0WHDP9k5m9\nNMZfZmYfM7MvA9fGrR3+1sy+EcPLu9bL4tCk3+bdCgrtBuB4ohMbwt76a+LxEcBsPN4E/O9Enlqa\nB2P+W4Ffyyl/C3WHTT9O2HJkJWE79u8Ca+L5Q4Qtuo8AvgCsjnkuBv4wo9yLCLvOQvgHbQx4AfCv\nwPExfiL+fX+tDOCVwI54fBnwz8DKeH4dcFY8fhFhn6K+3yOF4Q36HBXDTHIzvmXAu83sFYR9el5o\nZkcS9sB5r5ldCfy9u385kffvgPe4+/U55Z8FvA/A3b9tZg8TPNM58HmPzp3M7F6CF7hJgpe6r8Yd\nhFcAX80o95+BD8edSG9y9zvi1s9fcPeHY31PJGS4IMbdbmbrzGxNlOHT7r4vpvuPwCmJba7XmNmI\n153TCFEKDSuJpcKbCf+5n+7upxG2I17l7rNEN5nA5Wb2hzG9A18mbJgHgJn9dhzq+Vbc0hjyfYfs\nSxw/T337+1vd/bQYfsLd32ZmZ8Ryd5jZazx4Z3sFYavvj5jZr0d58urKi3+mKc3PJuo+TopBdIKU\ngxhmniQM7QCsJTg4eT7+F348hPF9YN7dPw68l6AoavwRsMfM/grA3T8YX6ynu/u/AV8iKB3M7GTC\ncM39ZL+sneBT+CwzOynmGTWzl7j7NxIv7b83sxcBP3L3awhuHE+LeX/Ogic0EiupkjJsjPmezJDh\nFmBz7cTMTi3Ug0LkIOUghhZ3fxz4ipndBfwU8NNmdifw6wQ/xBC2Wf66me0gKIPLm8p4O7A6Oamc\n4IPAsljmJ4ALPfiIdjJWO7n7LsJ8xPVmdgdhSOnHM8rdCOw0s28BbwD+Mub9z8CNFtxQ1oa6LgNe\nFsu7gvp+/M0ybI7tv8PM7ollCdE22rJbCCFECn05CCGESCHlIIQQIoWUgxBCiBRSDkIIIVJIOQgh\nhEgh5SCEECKFlIMQQogUUg5CCCFS/H/47bHIoo+24wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuUJVV97z+/gXl1NzPdBxRUEAiRe5nERFDJxOeYh49o\nRJkbjcskPnKzvEkMXp17A7Q3kSQufERIook3d0WdoAkmRsBH7lXAhImJia+W4SGgjQqRiYDDYxpa\nhumZ+d0/9j7TdU5VnVN1XlWn+/tZa6+u2rUfv72rTv269t6//TN3RwghhEiypmoBhBBC1A8pByGE\nECmkHIQQQqSQchBCCJFCykEIIUQKKQchhBAphqYczOwkM7vOzL5uZjeb2Xkx/iIzu8vMro/hRYk8\nF5rZvJndZmbPH5ZsQgghOmPDsnMwsxOAE9x9t5lNAXPAy4BXAA+5+6Vt6bcAlwNPB54AfA443d0P\nD0VAIYQQuQzty8Hd73b33fH4YeBWwksfwDKynAN81N2X3P0O4Hbg7GHJJ4QQIp+RzDmY2SnAmcAX\nY9RvmdkNZvZBM5uOcY8H7kpku4tlZSKEEGKEDF05xCGljwNvil8Q/xs4FXgK8D3gkg7ZtbeHEEJU\nwNHDLNzM1gJXAH/l7p8AcPd7E9c/AHw6nu4BTkpkPzHGtZcphSGEED3g7llD+rmJhxII8wofBv6o\nLf5xieM3A5fH4y3AbmAd4cviW8QJ87b8PiyZB9z+i6qWYaXIOQ4ySk7JWfdQ9t05zC+HZwK/BNxo\nZtfHuFngVWb2FMKQ0XeAN0SpbzGzjwG3AAeB3/DYIiGEEKNlaMrB3f+F7DmNz3TIczFw8bBkEkII\nUQxZSA+PXVULUJBdVQtQgF1VC1CQXVULUJBdVQtQkF1VC1CQXVULMAyGZgQ3LMzMvcykihBCiNLv\nTn05CCGESCHlIIQQIoWUgxBCiBRSDkIIIVJIOQghhEgh5SCEECKFlIMQQogUUg5CCCFSSDkIIYRI\nIeUghBAihZSDEEKIFFIOQgghUkg5CCGESCHlIIQQIoWUgxBCiBRSDkIIIVJIOQghhEgh5SCEECKF\nlIMQQogUUg5CCCFSSDkIIYRIIeUghBAihZSDEEKIFFIOQgghUkg5CCGESCHlIIQQIoWUgxBCiBRS\nDkIIIVJIOQghhEgh5SCEECKFlIMQQogUUg5CCCFSSDkIIYRIIeUghBAixdCUg5mdZGbXmdnXzexm\nMzsvxjfM7Foz+6aZXWNm04k8F5rZvJndZmbPH5ZsQgghOjPML4cl4M3u/iPAVuA3zewM4ALgWnc/\nHfiHeI6ZbQFeCWwBXgi838z0ZSMGipm9wOzYa0KwF1QtjxB1ZWgvX3e/2913x+OHgVuBJwAvBS6L\nyS4DXhaPzwE+6u5L7n4HcDtw9rDkE6uPoAw2XQWX/mwIm66SghAim6NHUYmZnQKcCXwJON7d74mX\n7gGOj8ePB76YyHYXQZkIMSAaO+DSjfCaZsRGeMsO4OoKhRKilgxdOZjZFHAF8CZ3f8jMjlxzdzcz\n75A985qZXZQ43eXuuwYgqhBCrBjMbBuwrdf8Q1UOZraWoBg+4u6fiNH3mNkJ7n63mT0OuDfG7wFO\nSmQ/McalcPeLhiSyWNHcfwmc9yxgYzg/7xFYuKRSkYQYEvGf5l3NczN7W5n85t7pH/fesfCJcBlw\nn7u/ORH/7hj3LjO7AJh29wvihPTlhHmGJwCfA37Y2wQ0M3d3Q4geCHMMjR3h7P5L3F1DSmJVUPbd\nOUzl8Czg88CNLA8PXQh8GfgY8ETgDuAV7v5gzDMLvB44SBiGSv1wpRyEEKI8tVEOw0LKQQghylP2\n3Sk7AiGEECmkHMSKJhi9Tc2ZHbvXbGZOdg1CFEPDSmLFEhTBxCdhYj28J8ae9ygsnKOJaLHaKPvu\nHIkRnBDV0NgBp6+H/0bC8G29DN+E6I6GlYQQQqTQsJJYsWhYSYhltJRViARBQUxeDOtPhsN3woOz\nUgxiNSLlIIQQIoXsHIQQQvSNlIMQQogUUg6iZ/r1qjZIr2wrwcNbaMNMNNibmjOz2WG0aVB9tRL6\nXHTA3ccqBJGrl2O1B+AFsOkH8JcewqYfAC8YVf5hlVVxf+5PtCGGwbZpUH21Evp8tYWy787KBR52\nAxWGdR8a14SXgsfwlw6Na0aVf1hl1ac/t/ow2jSovloJfb7aQtl3p4aVhBBCpND2GaJH+vWqNkiv\nbCvBw9v9l8B5zwHWh/NbgPMS1wfVpkH11Uroc9EJ2TmInunXq9ogvbKtBA9voQ3TF8Oak+HRO2Hx\nCmhsC1cH16ZB9dVK6PPVhIzghBBCpJARnBBCiL6RchBCCJGiq3IwsxPM7INm9tl4vsXMfnX4oomq\nqbORU5ZsReXtpV117otutMvedt6zod0494koQIG1sZ8FXgncGM/XAjePy1pdhZ77ubZGTjmyzRaR\nt5d21bkveuir/TDRZmy3o3S7xrlPVmso++4sUuBX49/rE3G7x6WBCr32c32NnHJk21tE3l7aVee+\n6K2vtradn1u6XePcJ6s1lH13FplzeNjMjm2emNlWYF+ZrxMhhBBjRgFt81TgXwkK4V+BeeDHx0X7\nKfTcz7UdNsiRTcNKxWTXsNIqDWXfnV3tHMxsA3AI+E+AAd8A1rj7/kEop7LIzmF01NnIKUu2ovL2\n0q4690U32mUPf4+c7+rV0G6c+2Q1MnAjODP7mruf1S1uVEg5CCFEecq+O3P3VjKzxwGPBybM7CzC\nV4MDm4CJfgUVQghRXzptvPd84LXAE4DkhloPAbNDlEkIIUTF5K5WcvfL3P15wOvc/XmJ8FJ3v3KE\nMg4NGfGsHIZxLwdR5qi83Y3Ki5xYPRTaeM/MXgJsATY049z994coVydZBjLnEH4wm66C9ya3HH65\nJtXGj2Hcy0GUOUi5OpUVr30S3hu3+25u9f1e+q1XrBxKvzsLLH/6P8CHgbuAtwE3Ax8cl+VY+eXI\niGelhGHcy0GUOSpvd6PyIqcw3qHsu7OIEdwz3P1XgPvd/feArYRlrUIIIVYoRTzBPRL//sDMngDc\nB5wwPJFGhTxZrRyGcS8HUeaovN2NyoucWE0UsXP4XeB9wE8Bfxaj/8Ldf2fIsuXJ4z4gOwcZ8awc\nhnEvB1HmqLzdjcqLnBhfhuoJLlpLb3D3B3sRbhDICE4IIcozSCO47QSjN1g2gGtewwssZzWzDwEv\nBu519yfHuIuA/wp8PyabdffPxGsXAq8nbNdxnrtfU7QhQgghBkenOYefJ6EQMihi67CTMCT14USc\nA5e6+6XJhGa2heA3YgvB8O5zZna6ux8uUI8QQogBkqsc3P21/Rbu7v9sZqdkXMr6tDkH+Ki7LwF3\nmNntwNnAF/uVYzUwzPmT0Y6b97ZxXlvcrkGOty+X/eixwdfVmvvyys1LG66WbtsumN6emEeYbc+3\nnP7wsbAErL+vW/u79fMw+1KMEQXWxk4DfwTMxXAJsLnE2tpTgJsS528D7gBuAD4ITMf49wGvTqT7\nALC937W6qyEwxO2TB1l2p7KK1pOTrn277p62oe4s8w6H47yTfB3Stm+TXaBtO2I7mnmO81DGcr50\nXxznsL0tX2td3fo54/rA+lKh2lD23VmkwCuB3wN+CDgNuAi4soRA7crhsYQvBwPeTjSoy1EO5/bb\nwNUQhmnQV50hVylPbhle4Mp7N+ss87ldDcs6p233vtatbXllLOfL7ovTOsrZrZ+zrw+mLxWqDWXf\nnUXsHE5z93MT5xeZ2Q0F8mXi7vc2j83sA8Cn4+ke4KRE0hNjXIo4qd1kl7vv6lUeIYRYiZjZNmBb\nzwUU0DZfBJ6dOH8W8G8ltNUptH45PC5x/Gbg8ni8BdgNrANOBb5FXGrbj/ZbDQENK2lYScNKCt2f\nZS+TvogR3FMIq402x6gHgNe4e9evBzP7KPBc4DjgHsJ8wzbgKYRVS98B3uDu98T0s4SlrAeBN3n2\nhJ+77BxSaEJaE9KakBadGJoRnJltBnD3fT3KNhCkHIQQojxl351dN94zs3eY2bS773P3fWY2Y2Zv\n709MIYQQdabIrqwv8sR2Ge7+AMHqWQghxAqliHJYE/dUAsDMNhImjYUoTL8e0UL+qejpbGYu2xPa\nkfL78oK2XNbMnNnkvNnUotnMkllj0WzDfB/lzgb5j90b59c61Lt2j9kxS2aNg2bT8836Wj2+Tc4H\neRoLZjMLIU9jIVl+0X7vJlvJsmK6qbkoa0t6eWAcEwrMcJ8PfAH4VcKeSF8Azh+XGXeF6gN9rngK\n+Sf2p1cAZa10al/l00td7at1Gt56vr2Xcmfb5HLCvmIZ9W53mGhf8XQglrG/tYz2Mncky99ZcAVY\nR9nK3EO6rO7q91lQ6Ot36KXSFyz0RcB7Yqj0Rko5jF/o15Au5M/3btbdeKxsXcn8WfWe1ku5GYZ6\njb3Z9Z6WU297GVlpkgZrMwcKGhZ2lK3MPexmNCgPjFX+DvEy6YsYwQFcz/I+TNcXzCOEEGJcKaBt\nXgHcSbB1+DBhX6RfGBftp1B9QMNKoGElDStVHMq+O4sUeCPw2MT5Y4Abx6WBCvUI4aXQHFYo/zII\n+SfnwhDI9Fx7GW3lz/ZfV+OaUM/EPEwuwvQSzCzC+vk+yp0N8jf2tr980/UevQemlmDmIGyeb1WE\n07EfJuaDPDMLML0Q8swsJMsv2u/dZCtZVkw3ORdlbUnf77Og0Fso++4sYiF9E/BjHhOa2RrgBo/O\ne0aNjOCEEKI8A/MEl+CzwNVmdjlhJ9VXAp/pUT4hhBBjQJEvBwPOJWy458A/u/tVI5AtTx59OQgh\nREkGvn2GB65w9ze7+1uqVAyilboZE3WSZ9mIrWmwNZUyZBtEfe1xrcZz0/PxOBrKzcwFWTbsD8Zm\nM0vBqKyIgdf0vNkx+7KMxroZ7KXLmpkL6ZsGba1ldjDwi21oLJgdsxjkmZrLTnPs3mSftxrTbZjP\nMlYbBnV7ZkUHCkxibAfmgQXgoRgWxmVSZaUGarbqo5M8ZK42anj7FtQDqK996+79sP5Aut7UttZt\nq3zWH8iSK13ncYnVUckJ4PyVVfllTWTIxGxruuRKrKwtvTe1lZO77Xdi1VN/q7vG+ZldbaHsu7NI\ngd8Czqi6Yb02cKWGuhkTdffylmWwtbVnmYt7hDsxo94sb2nntuUp6oXu3CN1d25rnte4ZposORt7\n8w388jzFnVggTbKf+jMaHOdndrWFsu/OInsr3e3ut5b4GBFCCDHudNAy22P4E+BvgVcl4lK+neuq\n/VZqoGaf6J3kQcNKGlaq4TO72kLZd2fuaiUz+0vC6iQIS1hbErr763pRRv2i1UrLDNP726DlCdcm\nL4Z1TwqP0tJ8lmezfutrjwt/Jy+G9SfDoQfg4MKyt7Tp7cCT4JF1MHF0GOp45A549I15ci2Xf+hU\nOPRYWLcE91/q7hen27r+ZDh8JzyY2c60F7eDm2DieLADyTI7eGaLbbAnwdJRwEHw22HxinSaVm9y\noczpi0P84gOwcaGTh7tBUbdndjUxNE9wdUHKQQghyjMMT3CXmdl04nzGzD7Uq4BCCCHqT5EJ6R/3\ntCe4s4YnkhBCiKopohzMzBqJkwZw1PBEWr3UxUCoiHFZt/QF64nexxoLSQ9ry+VNzptNL5o1DnQz\nTutV9uXr2UZrrcZiTQOzpvHcMYvRiG5+2ZAt0/PZbGjHzGGzYw6Zbd4T0rak3xnKahwI7W43ZGuV\nL8Q1Yvr1e5bL2jC/7CUu37Ctimctoy9lBFdnCsxw/wrwDeAPgLfH418Zlxn3cQnUZCVHjhztq4Da\nViKVl5vMbaK3x5U9E/sztnzOXUXUq+zLebJXF8XyOmyRnVyttL1d3uYW1bPZeaY8vRX4jkSaiXi+\nwzO27z4Y4pJ5J3x5FVb2dtlVPmvpvjyyckqrlUYUyr47ixb6I8BvAW8EtoxTA8cl1MVAqLhxWZYX\ntuJyZ5fZNE7b6tnGWdnGab3Kvpwn22itmFe4ppxZhnWNa7LrP7dDWc3jZh/kpd2a0TeneatMndo8\n2mctu87ejSAVerkHeJn0RYaVcPevu/v7gCV3v6XQJ4kQQojxpaTmuX7ctN+4BDSs5BpW0rCSwlDv\ngZdJX8rOwcyud/cze9RDA2El2znUxUCoiHGZpwzcyssddh5tvAV8HfzgHpj8zrLhWmMH7D8V1j4e\n1qyFH9zZyTitV9mX82QbrbUaiz16ZzAwaxrPHTwKjj4Ej9wTjMiWgLW0G5OFdm5+K9hGOOiw5m44\ndHeo/Uj6PdGgbUOo5wc7Ww3ZJrcn5QOeCjMXABtg8fuw9u5Q1iObYHIG9j8A63IN26p41jL6si8j\nSFGOgRvBmdkPufu34/FJ7v7dZNyoWcnKQQghhsXAjeCAK5oH7v7dePh3ZQUTQggxPuS6CTWzM4At\nwGYzO5fl/ZU2ARtGI54QQogq6PTlcDrw88Dm+Pcl8e9ZwK8NXzQxSjIMwWazjKRKGMPNBkOsxoFg\n3NXqLS0nz85Y/0LIm1fHEe9n+9qNqfLkS3tdK2fMl2UoF0KzjVOLwTtc00Ncq2FfuqzpmO+YfbHd\n7YZ70UDw2L1Z18uQ0/bM+1u8rP6M5+pi8DkqxrK9BWa4n1H1LHs/M+4Khfo0a8VOYvXMkZU3Xbbl\nTm4tnVph48RtrVvrbeZp30b7yEqg9jraVrxsOrLqJU++dHxu2SW2HN90ANYvLZd1XJbszXa113Og\nbdVOe1/vzN92u9zKog5tT93f8mX1tsppUOWMS6hLe8u+O4sU+FjgrcBfhIeWncCHKuzoUg1UKNKn\neYZgSaOsLKOwPGO4PMOt4C2ttd5mmjzvbN0M7rZ605gqT74uHty6GvPl98+JbWVllX9agXqaBm/N\n85kDrX3Zu8Fa57afW6rMQRnP1cXgc7S/r+rbW/bdmTvnkOCTwOeBa4HDzQ+OAvmEEEKMKwW0ze6q\nNW8/2k+hUJ9qWEnDShpWGurvq/r2ln13Finw7cCLq+7gXhuoULhfXwCTc2EvoOk5YHZ5SKbdujYd\nn3FtFibmwxDJ9EK7YsjJszPWvxDy5tUxPQczCzC1L8jcXb7l+Om52M5u8mdca+mfqHSabZxchM3z\nIUztC/Kt79CGzTHf1L7Y7pZ6Y//vDSF9vfy9TbU98/4WL6s3WQZdzriEOrS37LuziBHcw8AEcIBg\nAtqsZFPHjENCRnBCCFGegRvBufuUu69x9w3ufkwMhRSDmX3IzO4xs5sScQ0zu9bMvmlm17R5mbvQ\nzObN7DYze37RRgghhBgsRb4cnpMV7+6f71q42bOBh4EPu/uTY9y7gb3u/m4zOx+YcfcLzGwLcDnw\ndOAJwOeA0939cFuZ+nIQQoiSlH53Fhin+nvg0zFcC+wD/rHEONcpwE2J89uA4+PxCcBt8fhC4PxE\nus8CW/sdN6tToMJxR3LHzDuPwxdoR2rsOqud6TzNeYP1+2F6KRw3x9a7j41zZO6hsRfW7QnzFI29\nIX2yrRPzcf7iSLs7t6M5Z5Asa7n+7PPJOdiwCDMHYztmW8ufnovzD4n5nKP3wMzhEI7eG8qYnFuu\nf/NiaNNk4l5Nz4Vr0wtwzD6YPAwzDhv35vTzzsS8xWy631rna3p9fmmdH8mcWxr176DK31pdQ9l3\nZy8VnARcWSJ9u3J4IHFszXPgfcCrE9c+AGzvt4F1CVS4YoHc1TYT+zut4CnYjvZVL1lbZCfiUqtv\nkvnj6p6mPO0rmFpWH+3PLyO5imiTd9iOO0emZt4Jb11Z1NxOPHm+/kBM19Ymdub309qM9Gs9vOjb\nVz41PNSx6UD+qqjjHCYOde9ndva6bXbe80vm1uv5CmIUv4Mqf2t1DqNQDgbcWiJ9rnKI5/fHv1nK\n4dx+G1iXUKUhTL4RV7s3sXO7ypVvVHWkTVme1xJxeQZjzePT2o7TfdZdhqRxWhEvb3kyFfXAdmJG\nuqQhW7uMx2Wkb3jrPWivI+9aM25rgX7OkqmYN7YOBoaZ97vK30FdjM7qFsq+O7sawZnZ+xKna4Cn\nAHPd8nXgHjM7wd3vNrPHAffG+D2Er5ImJ8a4LJkuSpzucvddfcgjhBArDjPbBmzruYAC2ua1wGti\neDXwzJLa6hRavxzeTZxbAC4A3hmPtwC7gXXAqcC3iBPm/Wi/ugQ0rKRhJQ0rjeR3UOVvrc6h7Luz\naKHrgScDPwqsLSHMR4H/INhIfBd4HdAgrET6JnANMJ1IPwvcTpi0zryZ46ocouyakNaEtCakNSFd\nSSj77iyylHUbcBlwZ4x6IvAad/+njhmHhJayCiFEeYbhJvRrwKvc/Rvx/HTgb9z9rL4k7REpByGE\nKM8w3IQe3VQMAO7+TTp4kBPDY5QOQ8rU1S1tOQdBvToYajqymZozm9xj1jhoNrNkdtRes8Z+s8Zh\ns42L7U6HssoOcjQWgjOetXtC2Z0d5Cw7A5pZMGssBic+k/PB4U9j0WzykNmMBznW7Q/OfpJlJuVv\nOgyaWWg6Fuql73u9L9kOmI7da2ZXx/YdCG070l8jd2Qzls5zxo0C41Q7CctKtwHPi8fy5zD6do9s\nkq1MXd3Sdrqecc3bdwotl7/hsCExaZua0HZYf2TCNKfsnR12RE3Jt1zOxP7l5ajNyd4pX95xNWvH\n2/byGzFPKn3mpHHJvi10X1rjk/JlTdpPHCB7AcJQx/hH+VtYSaHsu7NIgRuAHcCVMbwZWD8uDVwp\nYZRrt8vU1S1tp+sFbCZybBo65U/aHGTZSZzozXX42fm7OdpJO8jpbEeytUM5WfF56dP9X75vut+X\nfPuPPFkz7RyGalMgO4Ze+w0vk77r8JC77wcuiUEIIcRqoIC2+XngeuAB4KEYFsZF+62UgIaVCuTX\nsFKHvtWw0ioPZd+dRQr8FvBjwJqqG9dLA1dSYIRrt8vU1S1tp+tt1zrYNHTL37SNmJyDiT3B5mB6\nCdbshZn9wZ5gwyJkeaPLcrQzsxCGmI7eE+0CcuVbLmdyLtggzCwGe4SJ+WDfMLMYjNSmPcixdn+w\nZ0iWmZS/aeswvdBum9FH3xa+L23xOxM2DFfH9h0Ibcu3a1lJv4WVEsq+O4ssZf0n4Kfc/VDHhCNC\nS1mFEKI8Zd+dRZakng98xsyuI1g6Q9BAl/YioBBCiPpTRDn8AWGeYQNh3yMhhBArnQLjVDdXPVbW\nz7iZQtf+7LYPUqGx/3SZ3ffvoct8A7n7QU3Mh3Hv6Yx9jCbn4vUFmFwMYSZz7L41z3QMG/eF/Yqm\nDgNXhzTrY31Ti4m5gra9qZp7J63bE+YYZg6GuYXphbD30fTBsBfSpsPhWhiz79z/zfmHdD/m55uM\n+y8dafNsax9vbrZlH0f2ssq/992fheRcSbMPs/fp6vb8FH2+xjVU3b6y784iBb67TjdKymGgfZm1\n6iNz9UlO2rwVNF13/mwtL7UqKMqRtZNsc8fV5Mqf5g6oyV1Y83dkba2/406nDnZoeXVRe1kTbTvD\nPjNjdc+OtjJb+mWprYxE/2emz9hRtr2/Um327JVRm3L6vKXc9jbmPAuNtrLSO/x2e36KPl/jGurQ\nvmEoh4eBw8B+tJR1RYUcY6JMo6aihkfZ6dIOZfKNrZJyZBmWdXKsk3TQk+/op7X+rg50PD9du+Of\nx3q6Te1/2/O3l9Hs/1yjs7x7sXe5vKz2tJeX2TcZ9z4lX079nR1H9WMsuRJCHdpX9t1ZxAhuyswa\nwJMI8w5CCCFWOgW0za8BNxGM4K4DHgH+sToNXE77KXTsSw0raVip073XsNJwf2tjP6x0M7AR2B3P\nzwCuqrCTSzVQoWt/akJaE9KakK7otzbi+r1M+iJGcF9196eZ2W5gq7vvN7Nb3H1Lx4xDQkZwQghR\nnmEYwX3XzGaATwDXmtkDwB09yieEEGIM6Prl0JI4uAzdBHzW3Q90ST4U9OUghBDlGYYnuCO4+y53\n/1RVikEMliJe2Poo7wV58bGupnex2c7yJD2kJT2yTc8Hj2TH7Gv37lZEtnRdU3NBns17Qpkp2WZD\nfONAqLsXj3czc20e3mZjm/YGj3HT8+F46oj3t2y5m3nW7zGbXkx4Zpvtdj/LeI6L8qU8v60E5Emu\nAFVP0gx7UkUhtx+7bpfdZ3k5K1smDqRXzTDbmi5rZU3T3iBz62inbbfVzrJN7G9dUTWRKL9ltU1T\nttmQpn3lVKmtyfe3rkDquh32flKrhyb2h3qz7lkjtiP/fhaQscN9OrJF99hPFHfqh5Ucyr47Kxd4\n2A1UyOvHLKOctJez/srLMpjKM77qZBSXzJPvkay4bO0y5BmOHZEtxyCvrMe7PM9qRb2s5cmZzJN/\nP4vJ2KmutDHjOIY6GKRV0268TPpSw0pCCCFWCVVrs2FrP4XcftSwkoaVNKykYaXcUGq1Uh3QaqXB\nESbiGjvC2f27oLEtHl/i7lf3Wd6RMtrjgadC4y3x/FJ3vzhfnsPHwlKsYS2w5r5wbfPrYM3JsPQI\nPPyuZhlFZQt/k3VNbof1J8PBR+HwFKxbapNtFqbOh7Ub4fCdsO+N7X2U1/7la9MXw8EfhqMNmIcH\nr4Dp7aEdiw+E3WmOmoFH74TFWXe/Olvu6YtDnocfhY3TsGZtyPODnYl7uCvrfnaXsf0+TV8AtiGW\nn2rzuNKpH1YqZd+dUg5CCLEKGOpSViGEEKsDKQchhBAppBxWGYMy/mk1xlo22hokWbLmGdAVzV+2\njOVymkZyM5ltLWYAl91X4XqLUd/OfMO3qblWo72mMd1gDLqKGjL2U0c/cogRUvUM+rBn3BVa+m4g\nqzQouC33EGTdmbXSqUxbCSuACpWxXE5q6/CWtnbq1259Fa8nViC1rzpqX6F0nMP6Dqu3el9506HP\nRrq6Z9T1rZZQ9t1ZucDDbqBCsu8GY/xT1Nvb4GVtenxrkT/T+K2DUV6Wp7suBnSDMIDL7qvuXtW6\necPL9KLX030obsg4XKOx1WqkNuxQ9t2pYSUhhBBpqtZmw9Z+Ci19p2ElDSuVfj4G9dyM+jlVSPWr\nl0pftcDDbqBCqv8G4o2Kgt7eBi1reLk39zvKf6l3amuZMpbLafVIV6Zfu/VVuJ7voS0j/2ybPCkv\neoN+PgYibyQtAAANSUlEQVT13Iz6OVVo6VMvk15GcEIIsQqQEZwQQoi+KeImdCiY2R3AAnAIWHL3\ns82sAfwtcDLBFekr3P3BqmQUQojVSpVfDg5sc/cz3f3sGHcBcK27nw78QzxfsawGQ59BtnFQBlqt\nRmcbF6MHtty82R7qpubaPbd1Mq5ru3Z1h3SdPNYN5Bnpt8xRyrQafiO1pcLJke8Ax7bF3QYcH49P\nAG7rd1KlroFVsCJjkG3MK6tsHaRWB3XeqjyjfIftidVCzRVEa5fyVkHRskJqe/vqomS69rr2h9VK\ng3tG+r0nw3huB3VvFbr2s5dKX6Gg3wauB74K/FqMeyBx3ZLnvTawrmE1GPoMso2DMtAq6wEvO/1p\nno47LiMuGNe1Gt5l5T2SrotBXP/PSL/3ZBjPbV2M71Z6KPvurGzOAXimu3/PzB4DXGtmtyUvurub\nmWdlNLOLEqe73H3X8MQUQojxw8y2Adt6LqBqbRY12tuAHYRhpRNi3OPQsNJYh0G2Ma+ssnWgYSUN\nK63SUPbdWZWQE8Ax8XgS+ALwfODdwPkx/gLgnf02sM6BVWDoM8g25pVVtg5ajM42LIbj/Lxt5UeD\ns8m5mO+IYRsdjOvarl3dIV1LW4bxjPRb5ihlWg2/kVGFsu/OSozgzOxU4Kp4ejTw1+7+jriU9WPA\nE8lZyiojOCGEKI/chAohhEghC2khhBB9I+UgutKbkVk1hktFvLwVlW853cyc2WSLwdvwWlCe4Rql\nzcxFr3MDu/cybBsTqp4kGfakikLf/d3LaqBKVphQYDvuovKl0x0XVzUNfnvyUd6f3spstr3/e1/l\n87HaQ9l3Z+UCD7uBCv329yCMzEZjuFTEy1tR+fKN5ZqGafUwxhqdUdq5XcsuIosM26p8VvAy6TWs\nJIQQIk3V2mzY2k+h7/7WsJKGlTSstAJC2XenlrKKroRJw8aOcHb/Je5+9SDTD5IwCd14S6z7Une/\nuFf5ltMdPhYObIINM/DonbA4O8o2dWMY/d3a9iVg/X2DuvdVPh+rGdk5CCGESCE7ByGEEH0j5SCE\nECKFlIMQJenFiEuGX2Lc0JyDECUIL/ZNV8F7N4aY8x6BhZd3mlTtJY8Qg6bsu7NKZz9CjCGNHXDp\nRnhNM2IjvGUH0OFF30seIapFw0pCCCFS6MtBiFLcfwmc9ywgOUR0yeDzCFEtmnMQoiS9GHHJ8EtU\njYzghBBCpJARnBBCiL6RchBCCJFCykEIIUQKKQchhBAppByEEEKkkHIQQgiRQspBCCFECikHIYQQ\nKaQchBBCpJByEEIIkULKQQghRAopByHGAHmSE6NGG+8JUXPkSU4MAnmCE2LFIU9yYvRoWEkIIUQK\nfTkIUXvkSU6MHs05CDEGyJOc6Bd5ghNCCJFi7D3BmdkLzew2M5s3s/OrlkcIIVYjtVIOZnYU8KfA\nC4EtwKvM7IxqpeoNM9tWtQxFGAc5x0FGkJyDRnJWS62UA3A2cLu73+HuS8DfAOdULFOvbKtagIJs\nq1qAAmyrWoCCbKtagIJsq1qAgmyrWoCCbKtagGFQN+XwBOC7ifO7YpwQQogRUjflMF6z40IIsUKp\n1WolM9sKXOTuL4znFwKH3f1diTT1EVgIIcaIsV3KamZHA98Afhr4D+DLwKvc/dZKBRNCiFVGrSyk\n3f2gmb2RsGfMUcAHpRiEEGL01OrLQQghRD2o24R0JmZ2tpl92cyuN7OvmNnTE9cujAZzt5nZ86uU\nM8rzW2Z2q5ndbGbJuZJayQlgZjvM7LCZNRJxtZHTzP4w9uUNZnalmW2uo5xRntoZb5rZSWZ2nZl9\nPT6P58X4hplda2bfNLNrzGy6alkh2DnF3/in43nt5DSzaTP7eHwubzGzn6ipnBfG+36TmV1uZutL\ny+nutQ/ALuAF8fhFwHXxeAuwG1gLnALcDqypUM7nAdcCa+P5Y+ooZ5TpJOCzwHeARh3lBH62WT/w\nTuCdNZXzqCjDKVGm3cAZVd7fKNcJwFPi8RRhPu8M4N3Ab8f485v9WnUA3gL8NfCpeF47OYHLgNfH\n46OBzXWTMz6H3wbWx/O/Jez3XkrOsfhyAL5HuAkA08CeeHwO8FF3X3L3Owg/0LNHL94Rfh14hwcD\nPtz9+zG+bnICXAr8dltcreR092vd/XA8/RJwYjyulZzU1HjT3e92993x+GHgVoLd0EsJLzni35dV\nI+EyZnYi8HPAB4DmippayRm/XJ/t7h+CMEfq7vuomZzAArAETMRFPhOEBT6l5BwX5XABcImZ/Tvw\nh8CFMf7xBEO5JlUbzT0JeI6ZfdHMdpnZ02J8reQ0s3OAu9z9xrZLtZKzjdcD/y8e103O2htvmtkp\nwJkEJXu8u98TL90DHF+RWEn+CPifwOFEXN3kPBX4vpntNLOvmdlfmNkkNZPT3e8HLgH+naAUHnT3\naykpZ21WK5nZtYTP4HbeCpwHnOfuV5nZLwAfIgw5ZDHUGfYuch4NzLj71jgv8jHgh3KKqlLOC4Hk\nOH2ntc9VyTnr7s2x57cCB9z98g5FVbmyotarOsxsCrgCeJO7P2S2fLvd3au2HTKzlwD3uvv1efsU\n1UFOwu/7LOCN7v4VM/tjwj+uR6iDnGZ2GvDfCcNL+4C/M7NfSqYpImdtlIO7573sMbO/cvefiacf\nJ3x6QhheOimR9ESWh5yGQhc5fx24Mqb7SpzsPa5OcprZjxL+A7ohviROBObM7CfqJGcTM3stYbjh\npxPRI5ezC+3ynETrl01lmNlagmL4iLt/IkbfY2YnuPvdZvY44N7qJATgGcBLzezngA3AJjP7CPWT\n8y7CF/dX4vnHCf9o3V0zOZ8G/Ku73wdgZlcCP0lJOcdlWOl2M3tuPP4p4Jvx+FPAL5rZOjM7lTCs\n8+UqBIx8giAfZnY6sM7d91IjOd39Znc/3t1PdfdTCQ/8WfFzszZyQlgBRBhqOMfd9ycu1UpO4KvA\nk8zsFDNbB7wyylgpFrT/B4Fb3P2PE5c+xbJD6tcQntvKcPdZdz8pPo+/CPyju/8y9ZPzbuC78bcN\n8DPA14FPUyM5gduArWa2MT4DPwPcQlk5q5xVLzH7/jTCWOlu4N+AMxPXZgkTkrcRVzRVKOda4CPA\nTcAcsK2OcrbJ/G3iaqW6yQnMA3cC18fw/jrKGeV5EWE10O3AhVXLE2V6FmEMf3eiD18INIDPEf7J\nugaYrlrWhMzPZXm1Uu3kBH4c+ApwA2GUYHNN5fxtguK6iTD5vLasnDKCE0IIkWJchpWEEEKMECkH\nIYQQKaQchBBCpJByEEIIkULKQQghRAopByGEECmkHMTYYmabo1V6L3nvsMRW5TlpnmtmP9mbdEKM\nN1IOYpyZAX6jx7xFDHyeR9jaodaYmX7HYuDooRLjzDuB06KDmEvN7HNmNmdmN5rZSwHMbNLM/q+Z\n7Y6OT34hWUDcYuAzZvarbfGnAG8A3hx34HyOmX07Xps2s0Nm9qx4/nkzOy06U/mEBedE/2ZmT84S\n2szOi45YbjCzj8a4qbjb540x/uUx/lUx7iYze2eijIfN7D1mthv4STP7JTP7UuyLP5fCEP1Sm433\nhOiB84EfcfczzewoYMLDrqPHEbZZ+RRhu4g97v5iADM7JpH/GIIjlMvc/a+SBbv7HWb258BD7n5p\nzPsNM9tC2Gl3jrA9+1eAE939W2b2PmDO3V9mZs8DPkzYJjtL7lPcfcnMNsW43wEecPcfi3VNm9nj\nCQrwLOBB4BozO8fdP0nYo/+L7v4/zOyMWOYz3P2Qmb0feDVhKxchekL/XYhxJrnV+BrgHWZ2A8Eb\n3+PN7LHAjcDPmtk7zexZ7v5QIu8ngQ+1K4YOdfwz8Bzg2cA7CHsXPY3lTf+eSXwhu/t1wLFxu+x2\nbgQuN7NXA4di3E8Df9ZM4O4PAk8neD28z90PEbykPScmOUTYbbWZ96nAV83sesLmj6d2aJMQXZFy\nECuFVwPHEXaYPZOwHfEGd58n/Pd+E/B2M/udmN6BfyFsmAeAmf1GHJb5WtzSuJ3PE17OZxMcD00D\n2whK40gxbXksDhddb2Z/H+NeTFAEZwFfiV89WXm9Lc5YnivZ760bo13m7mfG8J/d/fcz5BeiMFIO\nYpx5iDA0BGF3zHvjsMrzgJMB4kt+v7v/NfAeWod5fhd4wMz+DMDd3x9frme5+/fayofwhfAM4JC7\nP0rYmfMNBKUBQUm8Ota7Dfi+uz/k7q+L5b4kbqH8RHffRXAUs5ng3/la4DebFVlw/v5l4LlmdmxU\nIL8I/FNGP/wD8F/M7DExb8PMnli8G4VII+UgxhYPzky+YGY3EbZSfpqZ3Qj8MsFfMsCTgS/F4Zbf\nBd7eVsabgI1m9q6MKj4NvDz+1/9Mdz9AcL34xXj988CUu98Uzy8CnhqHti5mee/8JEcBH4lyfg34\nEw9+iN8OzMSJ592E7d7vJiiQ6wjbbn/Vo3c8Equt3P1W4H8R5iRuIGzHnOVdT4jCaMtuIYQQKfTl\nIIQQIoWUgxBCiBRSDkIIIVJIOQghhEgh5SCEECKFlIMQQogUUg5CCCFSSDkIIYRI8f8BgxBuX3wH\nlFMAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.plot(kind='scatter', x='task-one-score', y='amount-chocolate');\n",
"df.plot(kind='scatter', x='task-two-score', y='amount-chocolate');\n",
"\n",
"\n",
"\n",
"print(\"Pearson's r for task one is {}\".format(df['task-one-score'].corr( \n",
" df['amount-chocolate'])))\n",
"\n",
"print(\"Pearson's r for task two is {}\".format(df['task-two-score'].corr( \n",
" df['amount-chocolate'])))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"> **5.** After you come back with your results, your colleague has one last idea: Maybe you need to eat more than some critical amount of chocolate (which depends on your body mass index) in order for there to be a correlation between the two tasks? He guesses that you need to eat at least six times your BMI in chocolate in order for the correlation to show up. You think your colleague is crazy, but go ahead an test his claim. What do you find? Again, produce some figures, compute correlations and test for significance."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pearson's r for task one is -0.167591510532\n",
"Pearson's r for task two is -0.207677642024\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UHVWZ7/HvD3kLhBA6UZAQDXcEhygicYysAaXVCx1n\n1CgMMLMYF4LXmRGXYWmukoSlZMZX1DBq1mTW3ItJGJ3EUXkRdYwNDq04gGBIILxEAhIkeIk6IAkr\nRAN57h+1W4quc7pPne7q89K/z1p7ddU+VbuffV7qOVV1qrYiAjMzs7x9Wh2AmZm1HycHMzMrcHIw\nM7MCJwczMytwcjAzswInBzMzK6gsOUiaKelGSfdIulvSglR/Vqp7VtKcIesslrRF0mZJp1cVm5mZ\nDU9VXecg6QjgiIjYKGkysB54BxDAXuBfgIURcUdafjawBngtMAO4ATg2IvZWEqCZmdVV2Z5DRDwW\nERvT9FPAfcCREbE5Iu6vscp8YG1E7ImIrcADwNyq4jMzs/rG5ZyDpFnAicBPhlnsSGBbbn4b2R6E\nmZmNs8qTQzqk9E3gorQHUYbv7WFm1gL7Vtm4pP2Aq4CvRsS1Iyz+KDAzN39UqhvaphOGmVkTIkKN\nLltZcpAk4MvAvRHxhXqL5aavA9ZIupzscNIxwG21VirTwU4jaWlELG11HFXo5r6B+9fpJkD/Sn2x\nrnLP4WTgr4G7JG1IdUuAA4DlwHTgu5I2RMRbIuJeSV8H7gWeAS4M3zLWzKwlKksOEfFj6p/TqHmI\nKSI+BXyqqpjMzKwxvkK6/Qy0OoAKDbQ6gIoNtDqAig20OoCKDbQ6gHZS2UVwVZEU3XzOwcysCmW3\nnd5zMDOzAicHMzMrcHIwM7MCJwczMytwcjAzswInBzMzK3ByMDOzAicHMzMrcHIwM7MCJwczMytw\ncjAzswInBzMzK3ByMDOzAicHMzMrqCw5SJop6UZJ90i6W9KCVN8j6XpJ90vqlzQ1t85iSVskbZZ0\nelWxmZnZ8Krcc9gDfDAiXgGcBLxf0nHAIuD6iDgW+EGaR9Js4BxgNjAPWCHJezZmY0RSnzStPyvq\na3U81t4q2/hGxGMRsTFNPwXcB8wA3g5cmRa7EnhHmp4PrI2IPRGxFXgAmFtVfGYTSZYMplwDl5+W\nlSnXOEHYcCobQzpP0izgROAnwOERsT09tB04PE0fCdyaW20bWTIxs1HrWQiXT4LzBismwYcWAt9v\nYVDWxipPDpImA1cBF0XETum5UeoiIiQNN05pzcckLc3NDkTEwBiEambWNST1Ar3Nrl9pcpC0H1li\n+EpEXJuqt0s6IiIek/Ri4Fep/lFgZm71o1JdQUQsrShksy71+DJYcAowKZtf8DTsWNbSkKxS6Uvz\nwOC8pEvLrK+I4b64N0/ZLsKVwH9HxAdz9Z9NdZdJWgRMjYhF6YT0GrLzDDOAG4CXxZAAyw6SbWaZ\n7BxDz8Js7vFlEeFDShNI2W1nlcnhFOBHwF08d3hoMXAb8HXgJcBW4OyI+G1aZwlwAfAM2WGowpvX\nycHMrLy2SQ5VcXIwMyuv7LbT1xGYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmB\nk4OZmRU4OZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFVSaHCStlLRd\n0qZc3QmSbpF0l6TrJB2Se2yxpC2SNks6vcrYzMysvqr3HFYB84bUXQF8JCJeBVwDfBggjSF9DjA7\nrbNCkvdsrKtI6pOm9WdFfWUfNxsvlQ8TKmkW8O2IOD7N/zYipqbpmcC6iHiFpMXA3oi4LD22Dlga\nEbcOac/DhFpHyjb2U66BL03KahY8DTveOThW+kiPm41GJwwTeo+k+Wn6LGBmmj4S2JZbbhswYzwD\nM6tWz8Jsw38eWfnSpKyu0cfNxs++LfifFwBfkvRR4Drg98MsW3O3RtLS3OxARAyMWXRmZl1AUi/Q\n2+z6454cIuJnQB+ApGOBP08PPcpzexEAR6W6Wm0srTBEs4o8vgwWnALkDxsta/xxs8alL80Dg/OS\nLi2zfivOObwwIn6dTjavBv4zIlanE9JrgLlkh5NuAF4WQwL0OQfrZNl5hcFDRY8vG3o+YaTHzZpV\ndttZaXKQtBY4FZgObAcuBSYD70+LXBURS3LLLyE77PQMcFGtD4aTg5lZeW2VHKrg5GBmVl4n/FrJ\nzMzanJODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZ\nWYGTg5mZFTg5mJlZgZODmZkVjJgcJB0h6cuS1qX52ZLeU31oZmbWKo3sOawG+oEj0/wW4INVBWRm\nZq3XSHKYHhH/DjwLEBF7yEZqG5GklZK2S9qUq5sr6TZJGyTdLum1uccWS9oiabOk00v2xczMxkgj\nyeEpSdMGZySdBDzZYPurgHlD6j4LfDQiTgQ+luZJY0ifA8xO66xI40ybjRlJfdK0/qyor9P+13jG\nP1ZGG3O99RtptxOfL2iTuCNi2AK8BriZLCHcTHZY6YSR1sutPwvYlJtfC5ydpv8K+GqaXgxcnFtu\nHXBSjfai0f/t4pIvQB9M2QWrIytTdgF9nfK/xjP+dnke6q3fSLud+HxVGXfZbWcjDR4I7Ae8Ejge\n2B84sERAQ5PDS4FHgF8A24CZqX45cG5uuSuAM0fbQReXwQI9/dmHLVJZHdDT3yn/azzjb5fnod76\njbTbic9XlXGX3Xbu28DOxc0RMQe4e7BC0h3AnAbWreXLwIKIuEbSWcBK4LQ6y0atSklLc7MDETHQ\nZCxmZl1JUi/Q23QDw2SZF5MdUtpMlghek/72AptLZKtZPH/PYUduWsCTaXoRsCj32DrgdaPNfi4u\ngwUfVuq457ze+o2024nPV5Vxl912DtfQecCNwM70d7BcB5xRIqChyeEO4NQ0/Wbg9jQ9G9hIdtjq\naOBBQKPtoItLvmQfvMHDEtVuKKr4X+MZf7s8D/XWb6TdTny+KnzvRJnllVaqS9JfRMQ3h12o/rpr\ngVOB6cB2sl8nbQL+CTgAeBq4MCI2pOWXABeQ/VT2ooj4fo02IyLUTDxmZhNV2W3niMkhNfpWsm/2\nBw7WRcQ/NBXhKDk5mJmVV3bb2cjtM/4FOBtYQHaO4GyyXxyZmVmXauSw0qaIOF7SXRHxKkmTgXUR\nccr4hFiIx3sOZmYljfmeA9l5AYBdkmaQnQ84opngzMysMzRyncN3JB0GfA5Yn+r+b3UhmZlZqzV0\nQvoPC0sHkl0d/dvqQhoxBh9WMjMrqey2s+6eg6Qzee4KZeWmkUREXN10lGZm1taGO6z0NurcviJx\ncjAz61KlDiu1Ax9WMjMrr4rrHKZK+kdJ61NZJunQ0YVpZmbtrJGfsq4EdgBnkV0At5NsEB8zM+tS\njVwEd2dEnDBS3XjxYSUzs/IquQhO0utz/+AUYFczwZmZWWdo5CK4vwP+NXee4Qmy23mbmVmXavjX\nSoPJISKerDSikePwYSUzs5Kq+LXSpyVNjYgnI+JJSYdJ+sTowjQzs3bWyDmHt+RvlxERTwB/3kjj\nklZK2i5pU67ua5I2pPKQpA25xxZL2iJps6TTy3TEzMzGTiPnHPaRdGBE7AaQNIlsKM9GrAKWA/86\nWBERfzk4LenzwG/T9GzgHLJBhWYAN0g6NiL2Nvi/zMxsjDSy5/BvwA8kvUfS/wJuILexH05E3ER2\nArtA0uDAQWtT1XxgbUTsiYitwAPA3Eb+j1mepD5pWn9W1NfqeIYzFrHWa6NsfdXa6XUZKZZ2irVl\nGhyY+i3A51MpNdg1MAvYVKP+DcDtufnlwLm5+SuAM0c7SLbLxCpAH0zZBasjK1N2lX3PdlKs9doo\nW98JfR2vWNop1jHud5RavsFGjyC7Ed/bgBeVDKhecvhn4IO5+VrJ4YzRdtBlYhXo6c8+0JHK6oCe\n/lbHVVWs9dooW98JfR2vWNop1rHtN1Fm+RHPOUg6m2ygnx+mquWSPhwR3xhp3WHa3Bd4JzAnV/0o\nMDM3f1Sqq7X+0tzsQEQMNBuLmVk3ktQL9DbdQAPZ5i5yewvAC4G7SmSrWQzZcwDmATcOqZsNbCQ7\n2X008CDpOozRZD+XiVXooEMCYxFrvTbK1ndCX8crlnaKdYz7HaWWb6DBTfmNNNlJ7MJhojrrrgV+\nCfwOeAQ4P9WvAv6mxvJLyE5Eb673Yjg5uIxUsg/34CGU9v5Qj0Ws9dooW98JfR2vWNop1jHsc5RZ\nvpEb730OOAFYQzYi3Dlpz+Ejw65YEV8hbWZWXtltZyPJQcAZwClkI8PdFBHXjCrKUXByMDMrb8yT\nQ7txcjAzK6+KeyudmW5psUPSzlR2jC5MMzNrZ40cVnoQeGtE3Dc+IQ3Pew5mZuVVMdjPY+2SGMzM\nbHzU3XOQdGaafAPZFdLXAr9PdRERV1cfXs24vOdgZlbSmJ2QlrSa7NdJkP2E9XkLRsT5TcY4Kk4O\nZmbl+ddKZmZWUMWvla6UNDU3f5iklc0GaGZm7a+RE9InRHEkuDnDLG9mZh2ukeQgST25mR7gBdWF\nZGZmrdbIMKHLgFskfZ3sxPRZwCcrjcrMzFqqoRPSkl4BvInsF0v/GRH3Vh3YMLH4hLSZWUlVXARH\nRNwTEcuBPa1MDGZmNj4aSg45f1dJFGZm1lbKJgczM5sAGrnO4X/kZt9eo264dVdK2i5p05D6D0i6\nT9Ldki7L1S9Od4DdLOn0BvtgZmZjrJE9h6sGJyLikTT5jQbbX0U2XvQfSHojWZJ5VUS8Evh8qp9N\nNsrc7LTOCkneszEza4G6G19Jx6Wb7x0q6Yw0rsMZkt4NHNhI4xFxE/DEkOr3AZ+OiD1pmV+n+vnA\n2ojYExFbycaSnluqNx1AUp80rT8r6mt1PNZ9RnqPVfEebLbNZtbL1pm8XjrkSalnh3TYen+Wxt5w\n1zkcC7wNODT9HbQTeO8o/ucxwBskfQrYDfzviPgpcCRwa265bcCMUfyftpO9gadcA5dPymoWnCLp\nnRHx/dZGZt1ipPdYFe/BZttsZr1snYO+BS84APYnHXiYAwu+JWm+P0tjKCKGLcCfjrTMCOvPAjbl\n5jcBX0zTrwV+nqaXA+fmlrsCOKNGezGaeFpZoKcfVgdEKqsDevpbHZdL95SR3mNVvAebbbOZ9bJ1\nToqs+LNU7nUiyizfyBXSD0i6JG3kB5ePiLigyXy0Dbg6NXK7pL2SpgOPAjNzyx2V6gokLc3NDkTE\nQJOxmJl1JUm9QG/TDTSQbW4BLgPOBv4ilTNLZKtZPH/P4W+Bv0/TxwK/SNOzgY1k+4pHAw+SruAe\nTfZrpwL0wZRd2bec1ZFN09fquFy6p4z0HqviPdhsm82sl61z0G6YEjA9cuvu9mdpxOc7Si3fQIMb\nRxHMWuCXwO+AR4Dzgf2Ar5AdXloP9OaWX0J2InpzvRe6k5NDir8v2zXu6feb2aWKMtJ7rIr3YLNt\nNrNets7B62Hyk3DYDpi63p+lhp63KLP8iPdWkvQJ4JaI+O6wC44T31vJzKy8MR8JTtJTwEFk40fv\nSdUREVOajnIUnBzMzMoru+0c8YR0REweXUhmZtZpRkwOkt5Qqz4ifjT24ZiZWTto5LDSd8jGcYDs\nyui5wPqIeFPFsdWLx4eVzMxKquKw0luH/IOZwBebiM3MzDpEMze22wYcN9aBmJlZ+2jknMPy3Ow+\nwKvJrk8wM7Mu1cjtM9bz3DmHZ4A1EfFf1YVkZmatNuIJaQBJB5Dd6iKAn0W63XYr+IS0mVl5Y35C\nOt286Urg4VT1EknnRcQPmwvRzMzaXSM/Zb0D+KuI+FmaPxb4WkTMGYf4asXjPQczs5LKbjsb+bXS\nvoOJASAi7qexcxVmZtahGjohLekK4KuAgHOBn1YalZmZtVQjh5UOBN4PnJyqbgJWRMTvKo6tXjw+\nrGRmVtKY35W13Tg5mJmVN+bnHCS9TdIGSU9I2pnKjtGFaWZm7ayRE9JfAM4DpkXEIak0NJaDpJWS\ntkvalKtbKmlbSjgbJL0l99hiSVskbZZ0eunemJnZmGgkOWwD7omIvU20vwqYN6QugMsj4sRUvgcg\naTZwDtlY0vOAFZKauffThCepT5rWnxX1tTqeiWyk16LR16reclW81lmbh62Xpv1Gmrx+bNudnNo9\nbMza7RQd97lsYNzRk4B+YDGwMJUPlRi3dBawKTd/KbCwxnKLgYtz8+uAk0Y7DupEK1QwgLxLNa9F\no69VveWqeK1Tm7ufa3N6wEG7x6bdg3Zn7f0h3lG32ymlHT6XZbedjTR4PXA18Pdpw34pcGmJgGol\nh63AncCXgampfjlwbm65K4AzR9vBiVaygdpXB0QqqwN6+lsd10QsI70Wjb5W9Zar4rWu3eZJY9Tu\nSTFR35vt8Lksu+1s5DqHF0fEaQ0s16h/Bv4hTX8cWAa8p86yNX9KJWlpbnYgIgbGKjgzs26Qbn3U\n23QDDWSbzzKK3R+G7DnUewxYBCzKPbYOeN1os99EK7TB7qtLY69Fo69VveWqeK3xYaWWvBfGKYYo\ntXwDDT4F7AV2AztT2VEioOclB7I9kcHpD5LdAhyyE9Ebgf2Bo4EHSddhjKaDE7Fkb8TBww4T48PX\nrmWk16LR16reclW81lmbU9dDz2/g4PVj2+7Bqd2pY9Zup5RWfy7LbjsbvWV3D3AM2RjSpP8y4l1Z\nJa0FTgWmA9vJzjf0kg0YFMBDwN9GxPa0/BLgArJxIy6KiO/XaDPCF8GZmZUy5ldIS3ovsAA4iuyb\n/UnALRHxptEE2iwnBzOz8qq4K+tFwFzg4Yh4IzAHeLLJ+MzMrAM0khx2R8TTkN2ELyLuA15ebVhm\nZtZKjfyU9RFJhwHXAtdLeoLsOgUzM+tSpe7Kmn43OwVYFxG/ryqoEWLwOQczs5J8y24zMyuo4oS0\nmZlNME4OZmZW4ORgZmYFTg5mZlbg5GBmZgVODmZmVuDkYGZmBU4OZmZW4ORgZmYFTg5mZlbg5GBm\nZgWVJgdJKyVtl7SpxmMLJe1No8wN1i2WtEXSZkmnVxmbmZnVV/Wewypg3tBKSTOB04CHc3WzgXPI\nxpKeB6yQ5D0baylJfdK0/qyor9XxtJNmn5sh6y0Zro3xfv7b5fVuizjGYVDrWcCmIXXfAF5FNoZ0\nT6pbDFycW2YdcNJoB8l2cWm2AH0wZResjqxM2UULBoZvx9Lsc1NjvYCFNdsY7+e/XV7vquIou+0c\nj44+LzkA84F/TNP55LAcODe33BXAmaPtoItLswV6+rMPZ6SyOqCnv9VxtUNp9rmpvd4ZNdsY7+e/\nXV7vquIou+1sZCS4MSPpIGAJ2SGlP1QPs0rNwSYkLc3NDkTEwKiDMzPrImlwtt6mG6g+Cz635wAc\nD2wn22N4CNhDNuTo4cAiYFFuvXXA60ab/Vxcmi20yWGGdizNPjc11vNhpXGKo+y2s/KR4CTNAr4d\nEcfXeOwh4DUR8Xg6Ib0GmAvMAG4AXhZDAvRIcDaespOBPQuzuceXRcT3WxtR+2j2uRmy3gD09NZr\nY7yf/3Z5vauIo62GCZW0FjgVmAb8CvhYRKzKPf5z4E8i4vE0vwS4AHgGuKjWE+LkYGZWXlslhyo4\nOZiZlecxpM3MbNScHMzMrMDJwczMCpwczMyswMnBzMwKnBzMzKzAycHMzAqcHMzMrMDJwczMCpwc\nzMyswMnBzMwKnBzMzKzAycHMzAqcHMzMrMDJwczMCpwczMysoNLkIGmlpO2SNuXqPi7pTkkbJf1A\n0szcY4slbZG0WdLpVcZmZmb1Vb3nsAqYN6TusxFxQkS8GrgWuBQgjSF9DjA7rbNCkvdszCYQSX3S\ntP6sqK/V8bRCuzwH+1bZeETcJGnWkLqdudnJwG/S9HxgbUTsAbZKegCYC9xaZYxm1h6yDeGUa+Dy\nSVnNglMkvbPWWPLdqp2eg0qTQz2SPgm8C3iaLAEAHMnzE8E2YMY4h2ZmLdOzMNsonjdYMQk+tBCY\nMMmhnZ6DliSHiLgEuETSIuALwPn1Fq1VKWlpbnYgIgbGNEAzsw4nqRfobXb9liSHnDXAf6TpR4GZ\nuceOSnUFEbG02rDMbPw9vgwWnAIMHlJ5GnYsa2lI427snoP0pXlgcF7SpWXWV0TNL+djJp1z+HZE\nHJ/mj4mILWn6A8DciHhXOiG9huww0wzgBuBlMSRASRERqjRoM2uJ7Jh7z8Js7vFlE+l8w6CqnoOy\n285Kk4OktcCpwHRgO9kvk/4MeDnwLPAg8L6I+FVafglwAfAMcFGtJ8XJwcysvLZKDlVwcjAzK6/s\nttPXEZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZgZODmZkV\nODmYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZQaXJQdJKSdslbcrVfU7SfZLulHS1pENzjy2WtEXS\nZkmnVxmbmZnVV/Wewypg3pC6fuAVEXECcD+wGCANE3oOMDuts0LShNuzSYOCd6Vu7hu4f52u2/tX\nVqUb34i4CXhiSN31EbE3zf4EOCpNzwfWRsSeiNgKPEA2nvRE09vqACrU2+oAKtbb6gAq1tvqACrW\n2+oA2kmrv5lfAPxHmj4S2JZ7bBswY9wjMjOz1iUHSZcAv4+INcMs1lkDXJuZdQlFVLv9lTQL+HZE\nHJ+rezfwXuDNEbE71S0CiIjPpPl1wKUR8ZMh7TlhmJk1ISLU6LL7VhlILZLmAR8GTh1MDMl1wBpJ\nl5MdTjoGuG3o+mU6Z2Zmzak0OUhaC5wKTJf0CHAp2a+T9geulwRwS0RcGBH3Svo6cC/wDHBhVL1b\nY2ZmNVV+WMnMzDpPq3+tVIqkhZL2SurJ1XX8hXOSPp4uCtwo6QeSZuYe64b+dfWFj5LOknSPpGcl\nzRnyWMf3D7LDwakPWyRd3Op4RqPOxbk9kq6XdL+kfklTWxnjaEiaKenG9J68W9KCVF+ujxHREQWY\nCawDHgJ6Ut1sYCOwHzCL7NqIfVodaxN9OyQ3/QHgii7r32mDcQOfAT7TZf37Y+BY4EZgTq6+W/r3\nghT7rNSXjcBxrY5rFP15PXAisClX91ngI2n64sH3aCcW4Ajg1Wl6MvAz4LiyfeykPYfLgY8MqeuK\nC+ciYmdudjLwmzTdLf3r6gsfI2JzRNxf46Gu6B9ZzA9ExNaI2AN8jaxvHSlqXJwLvB24Mk1fCbxj\nXIMaQxHxWERsTNNPAfeR/cinVB87IjlImg9si4i7hjzUNRfOSfqkpF8A7wY+naq7pn85E+nCx27p\n3wzgkdx8p/ZjOIdHxPY0vR04vJXBjJV0KcGJZF/KSvVx3H/KWo+k68l2h4a6hOwXTvnjtcP9nLUt\nz7AP078lEfHtiLgEuCRd7/EF4Pw6TXVk/9IyHXvhYyP9a1Bb9m8EnRhz0yIiuuF6KkmTgauAiyJi\nZ/p1KNBYH9smOUTEabXqJb0SOBq4M3XuKGC9pNcBj5Kdixh0VKprO/X6V8Manvtm3TX9Sxc+/hnw\n5lx11/Svjo7p3wiG9mMmz98j6gbbJR0REY9JejHwq1YHNBqS9iNLDF+JiGtTdak+tv1hpYi4OyIO\nj4ijI+JosjflnLR7dB3wl5L2l3Q0dS6ca3eSjsnNzgc2pOlu6d/ghY/zo3jhY8f3b4j8Xm239O+n\nwDGSZknan+zuyde1OKaxdh1wXpo+D7h2mGXbmrJv0V8G7o2IL+QeKtfHVp9Zb+JM/M9Jv1ZK80vI\nTvRtBvpaHV+TffomsInsVyBXAS/qsv5tAR4mS3obgBVd1r93kh2Tfxp4DPheN/Uv9eMtZL96eQBY\n3Op4RtmXtcAvgd+n1+18oAe4gWwYgX5gaqvjHEX/TgH2pu3J4GduXtk++iI4MzMraPvDSmZmNv6c\nHMzMrMDJwczMCpwczMyswMnBzMwKnBzMzKzAycE6lqRDJb2vyXW35m/9bmbP5+Rgneww4MIm1+2a\nC3wktc1tcKx7ODlYJ/sM8EeSNki6XNINktZLukvS2wEkHSzpu2kgpU2Szso3IGmSpO9Jes/QxiUd\nKGlVau8OSb2p/t1p0KLvpYFTLsutc7qkm1McX5d0cI12XyzpRynuTZJOTvXz0nobJd2Q6nokXZsG\nSrpF0vGpfqmkr0j6MXClpOmSvinptlT+dMyeZZuYWn2pt4tLswV4KWnAFrIBaQ5J09OBLWn6TOD/\n5NYZXOahtP71wF/XaX8hzw289HKyW4AcQHZb9QeBQ9L8VrJbWE8HfghMSutcDHy0RrsfIrubK2Rf\n0CYDLwR+Abw01U9Nf5cPtgG8EdiQppcCtwMHpPk1wMlp+iVk99Vp+Wvk0rnFu6PWyfI3udsH+LSk\n15PdV+ZISS8C7gI+L+kzwHci4se5db8FXBYRa+u0fzLwJYCI+Jmkh8lGfAvgB5EGaZJ0L9koaYeR\njf52c7qD8P7AzTXavR1Yme6ceW1E3CnpjcAPI+Lh9P9+m4vhjFR3o6Rpkg5JMVwXEb9Ly/1P4Ljc\nbZkPkXRQROwa5vkzq8uHlaxbnEv2zX1ORJxIdjviAyNiC2lISOATkj6alg/gx2Q3lANA0oXpUM8d\n6ZbGUH/skN/lpp/ludvfXx8RJ6byioh4r6S5qd0Nkt4a2Uhkrye7FfZqSe9K8dT7X/Xqdw1Z5nW5\n/z3TicFGw8nBOtlOskM7AIcCv4qIZ9O38JdCdnwf2B0R/wZ8nixRDPoY8ISkfwKIiBVpwzonIv4f\ncBNZ0kHSsWSHazZTe2MdwK3AyZL+KK1zsKRjIuK23Eb7O5JeAvw6Iq4Arkgx3Qq8IY3cRe6XVPkY\netN6O2vE0A8sGJyR9OqGnkGzOpwcrGNFxH8D/yVpE3AC8CeS7gLeRTZuLsDxwE8kbSBLBp8Y0sZF\nwKT8SeWcFcA+qc2vAedFNoZyUOPXThHxG7LzEWsl3Ul2SOnlNdrtBTZKugM4G/hiWvdvgKslbSS7\nrTRk5xZek9r7FM/dj39oDAtS/++UdE9qy6xpvmW3mZkVeM/BzMwKnBzMzKzAycHMzAqcHMzMrMDJ\nwczMCpw30QTfAAAAFklEQVQczMyswMnBzMwKnBzMzKzg/wPcOi2hY9I1MAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cHWV99/HPF4EQjCHZxIok0VCFliggUSJVCosWNj5G\nQUBv9KbgbVWs4YagklgltRZRSYrlJdpXIQTRxKICgrYQsKzQypOBkPAQCWiUUAkiT+EODwF+9x9z\nLRl2zu6e2XNmzzmb7/v1ul47c83MdX4z5+z8zsycmUsRgZmZWd52rQ7AzMzaj5ODmZkVODmYmVmB\nk4OZmRU4OZiZWYGTg5mZFVSWHCRNk3SNpDsk3S5pbqo/MtU9J2lmv2XmS1onaa2kw6qKzczMBqeq\n7nOQtCuwa0SskjQOWAm8DwjgeeBfgHkRcUuafwawDNgfmAJcDewZEc9XEqCZmQ2osiOHiHggIlal\n4SeAu4DdImJtRNxdY5E5wPKI2BIR64F7gFlVxWdmZgMbkWsOkqYD+wE3DjLbbsCG3PgGsiMIMzMb\nYZUnh3RK6YfAiekIogw/28PMrAW2r7JxSTsAPwK+GxGXDjH7/cC03PjUVNe/TScMM7NhiAjVO29l\nyUGSgPOAOyPirIFmyw1fBiyTtJjsdNIewE21Fiqzgu1G0sKIWNjqOIajk2MHx99qjr+1yn6xrvLI\n4a3Ah4HVkm5NdQuAMcDZwGTgp5JujYh3RMSdki4C7gSeBU4IPzLWzKwlKksOEfFfDHxNo+Yppog4\nHTi9qpjMzKw+vkN65PW2OoAG9LY6gAb1tjqABvW2OoAG9bY6gAb1tjqAkVTZTXBVkRSdfM3BzKwV\nyu47feRgZmYFTg5mZlbg5GBmZgVODmZmVuDkYGZmBU4OZmZW4ORgZmYFTg5mZlbg5GBmZgVODmZm\nVuDkYGZmBU4OZmZW4ORgZmYFTg5mZlZQWXKQNE3SNZLukHS7pLmpvkvSVZLulrRC0oTcMvMlrZO0\nVtJhVcVmZmaDq/LIYQtwUkS8DjgA+JSkvYBTgasiYk/gZ2kcSTOAo4EZwGzgHEk+srG2J6lHmrQi\nK+ppdTxmzVDZzjciHoiIVWn4CeAuYArwXuCCNNsFwPvS8BxgeURsiYj1wD3ArKriM2uGLBmMvwQW\nH5qV8Zc4QdhoUFkf0nmSpgP7ATcCr4iIjWnSRuAVaXg34IbcYhvIkolZG+uaB4vHwrF9FWPh5HnA\nlS0MyqxhlScHSeOAHwEnRsQmaWsvdRERkgbrp7TmNEkLc6O9EdHbhFDNzEYNSd1A93CXrzQ5SNqB\nLDFcGBGXpuqNknaNiAckvRJ4MNXfD0zLLT411RVExMKKQjYr6eFFMPdAYGw2PvdJeHxRS0MyA9KX\n5t6+cUmnlVleEYN9cR8+ZYcIFwB/jIiTcvVfS3VflXQqMCEiTk0XpJeRXWeYAlwNvDb6BVi2k2yz\nqmXXGLrmZWMPL4oIn1KytlN231llcjgQuBZYzdbTQ/OBm4CLgFcB64GjIuLRtMwC4HjgWbLTUIV/\nMicHM7Py2iY5VMXJwcysvLL7Tt9HYGZmBU4OZmZW4ORgZmYFTg5mZlbg5GBmZgVODmZmVuDkYGZm\nBU4OZmZW4ORgZmYFTg5mZlbg5GBmZgVODmZmVuDkYGZmBU4OZmZW4ORgZmYFTg5mZlZQaXKQtETS\nRklrcnX7Srpe0mpJl0l6WW7afEnrJK2VdFiVsZmZ2cCqPnI4H5jdr+5c4LMRsQ9wCfAZgNSH9NHA\njLTMOZJ8ZGNtR1KPNG6lNOkhaeLKrA9ps9Gl0p1vRFwHPNKveo9UD3A1cEQangMsj4gtEbEeuAeY\nVWV8ZmVliWDnH8PYmbB4Epw1E8b/2AnCRptWfDO/Q9KcNHwkMC0N7wZsyM23AZgykoGZDa1rHuwz\nBs4Ejk3ln8dk9Wajx/YteM3jgX+W9AXgMuCZQeaNWpWSFuZGeyOit2nRmZmNApK6ge7hLj/iySEi\nfgX0AEjaE3hXmnQ/W48iAKamulptLKwwRLNBPLwIVh8Ep4zZWjf3aXh8UetiMitKX5p7+8YlnVZm\n+RE/rSTp5envdsDfAd9Kky4DPihpR0m7A3sAN410fGaDiYgrYfMcePIWOPmP8H9vgcfnZPVmo0el\nRw6SlgMHA5Ml3QecBoyT9Kk0y48iYilARNwp6SLgTuBZ4ISIqHlayayVUiJwMrBRTZ22/5UUEaFW\nx2Fm1knK7jt9H4GZmRU4OZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZ\nFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWcGQyUHSrpLOk3RFGp8h6aPVh2ZmZq1Sz5HDUmAF\nsFsaXwecVFVAZmbWevUkh8kR8W/AcwARsYWsp7YhSVoiaaOkNbm6WZJuknSrpJsl7Z+bNl/SOklr\nJR1Wcl3MzKxJ6kkOT0ia1Dci6QDgsTrbPx+Y3a/ua8AXImI/4ItpHEkzgKOBGWmZc1I/0zbKSOqR\nJq3Iinpa3c5ItdtOJC2QJj2UFS0YqXVu9utsC+9Vy0TEoAV4I/ALsoTwC7LTSvsOtVxu+enAmtz4\ncuCoNPwh4LtpeD7wudx8VwAH1Ggv6n1tl/YrQA+M3wxLIyvjNwM9rWpnpNptpwIsgPGxdR13Dhj/\nTNXr3Oxtuy28V03e/lFq/joa3AnYAXg9sDewI7BTiYD6J4dXA/cBvwM2ANNS/dnAMbn5zgWOaHQF\nXdqrQNeK7B85Ulka0LWiVe2MVLvtVKDroRev4wExEuvc7G27LbxXzd3+RJn5t6/j4OIXETETuL2v\nQtItwMw6lq3lPGBuRFwi6UhgCXDoAPNGrUpJC3OjvRHRO8xYzMxGJUndQPewGxgky7yS7JTSWrJE\n8Mb0txtYWyJbTefFRw6P54YFPJaGTwVOzU27Anhzo9nPpb0KPq3U8oJPK22Tpey+c7CGjgWuATal\nv33lMuDwEgH1Tw63AAen4bcDN6fhGcAqstNWuwP3Amp0BV3ar2T/1F0rstLozqHxdkaq3XYqWYLo\neigrLBipdW7262wL71UTt32UmV9poQFJ+kBE/HDQmQZedjlwMDAZ2Ej266Q1wDeBMcCTwAkRcWua\nfwFwPNlPZU+MiCtrtBkRoeHEY2a2rSq77xwyOaRG3032zX6nvrqI+NKwImyQk4OZWXll9531PD7j\nX4CjgLlk1wiOIvvFkZmZjVL1nFZaExF7S1odEftIGgdcEREHjkyIhXh85GBmVlLTjxzIrgsAbJY0\nhex6wK7DCc7MzDpDPfc5/ETSRODrwMpU96/VhWRmZq1W1wXpF2aWdiK7O/rR6kIaMgafVjIzK6ns\nvnPAIwdJR7D1DmXlhpFERFw87CjNzKytDXZa6T0M8PiKxMnBzGyUKnVaqR34tJKZWXlV3OcwQdI/\nSVqZyiJJuzQWppmZtbN6fsq6BHgcOJLsBrhNZJ34mJnZKFXPTXC3RcS+Q9WNFJ9WMjMrr5Kb4CT9\nZe4FDgQ2Dyc4MzPrDPXcBPcJ4Du56wyPkD3O28zMRqm6f63Ulxwi4rFKIxo6Dp9WMjMrqYpfK31F\n0oSIeCwiHpM0UdKXGwvTzMzaWT3XHN6Rf1xGRDwCvKuexiUtkbRR0ppc3fcl3ZrKbyTdmps2X9I6\nSWslHVZmRczMrHnqueawnaSdIuIpAEljybryrMf5wNnAd/oqIuKDfcOSzgQeTcMzgKPJOhWaAlwt\nac+IeL7O1zIzsyap58jhe8DPJH1U0v8Bria3sx9MRFxHdgG7QFJfx0HLU9UcYHlEbImI9cA9wKx6\nXsfai6QeadKKrKin1fEMZaB4y6xHI+vcadurHrXWqYr1HI3brm3U2TH1O4AzUynViTcwHVhTo/4g\n4Obc+NnAMbnxc4EjGu0k22VkC9AD4zfD0sjK+M1lPzPtEG+Z9WhknTttezWwTguavZ6jcdtV/L5E\nqfnrbHRXsgfxvQf4k5IBDZQcvgWclBuvlRwOb3QFXUa2QNeK7B81Ulka0LWi1XGVjbfMejSyzp22\nvRpYp4eavZ6jcdtV+74QZeYf8pqDpKPIOvr5eao6W9JnIuIHQy07SJvbA+8HZuaq7wem5canprpa\nyy/MjfZGRO9wYzEzG40kdQPdw26gjmyzmtzRAvByYHWJbDWdfkcOwGzgmn51M4BVZBe7dwfuJd2H\n0Uj2cxnZQocd6g8Ub5n1aGSdO217NbBOPq3U+vclSs1fR4Nr8jtpsovYhdNEAyy7HPgf4GngPuC4\nVH8+8Dc15l9AdiF67SD/iKVW0GXkS/ZP23dqpv3/WQeKt8x6NLLOnba9hrtOVaznaNx2Fb4nUWb+\neh6893VgX2AZWY9wR6cjh88OumBFfIe0mVl5Zfed9SQHAYcDB5L1DHddRFzSUJQNcHIwMyuv6cmh\n3Tg5mJmVV8WzlY5Ij7R4XNKmVB5vLEwzM2tn9ZxWuhd4d0TcNTIhDc5HDmZm5VXR2c8D7ZIYzMxs\nZAx45CDpiDR4ENkd0pcCz6S6iIiLqw+vZlw+cjAzK6lpF6QlLSX7dRJkP2F90YwRcdwwY2yIk4OZ\nWXn+tZKZmRVU8WulCyRNyI1PlLRkuAGamVn7q+eC9L5R7Alu5iDzm5lZh6snOUhSV26kC3hJdSGZ\nmVmr1dNN6CLgekkXkV2YPhL4x0qjMjOzlqrrgrSk1wFvI/vF0n9GxJ1VBzZILL4gbWZWUhU3wRER\nd0TE2cCWViYGMzMbGXUlh5xPVBKFmZm1lbLJwczMtgH13Ofwp7nR99aoG2zZJZI2SlrTr/7Tku6S\ndLukr+bq56cnwK6VdFid62BmZk1Wz5HDj/oGIuK+NPiDOts/n6y/6BdIOoQsyewTEa8Hzkz1M8h6\nmZuRljlHko9szMxaYMCdr6S90sP3dpF0eOrX4XBJfw3sVE/jEXEd8Ei/6k8CX4mILWmeP6T6OcDy\niNgSEevJ+pKeVWpthklSjzRpRVbUMxKvae2r6s9Ds9uvKt7B2s2mTVwpTXpIGrcyG/f/0Wgy2H0O\newLvAXZJf/tsAj7WwGvuARwk6XTgKeCUiPglsBtwQ26+DcCUBl6nLtmHePwlsHhsVjP3QEnvj4gr\nq35taz9Vfx6a3X5V8Q7Wbpr2YzhrTDbtlEnw7OUw5nlYPKaZcVgLRcSgBXjLUPMMsfx0YE1ufA3w\njTS8P/DrNHw2cExuvnOBw2u0F43EU2yvawUsDYhUlgZ0rWjma7h0Tqn689Ds9quKd7B2a0+bGv4/\nau9Sdt9Zzx3S90j6fNrJ980fEXH8MPPRBuDi1MjNkp6XNBm4H5iWm29qqiuQtDA32hsRvcOMxcxs\nVJLUDXQPu4E6ss31wFeBo4APpHJEiWw1nRcfOXwc+Ps0vCfwuzQ8A1gF7AjsDtxLuoO7kexXR3w9\nMH5z9k1naWTD9LQ6y7u0plT9eWh2+1XFO1i7adpTW6dNDhjzzIvr/H/UbqXsvrOeBlc1EMxy4H+A\np4H7gOOAHYALyU4vrQS6c/MvILsQvXagD1azk0Nqsyc7VO5a4Q+0S9Wfh2a3X1W8g7WbTZuwEroe\ngpeuzMb9f9TOpey+c8hnK0n6MnB9RPx00BlHiJ+tZGZWXtN7gpP0BLAzWf/RW1J1RMT4YUfZACcH\nM7Pyyu47h7wgHRHjGgvJzMw6zZDJQdJBteoj4trmh2NmZu2gntNKPyHrxwGyO6NnASsj4m0VxzZQ\nPD6tZGZWUhWnld7d7wWmAd8YRmxmZtYhhvNguw3AXs0OxMzM2kc91xzOzo1uB7yB7P4EMzMbpep5\nfMZKtl5zeBZYFhH/XV1IZmbWakNekAaQNIbsURcB/CrS47ZbwRekzczKa/oF6fTwpguA36aqV0k6\nNiJ+PrwQzcys3dXzU9ZbgA9FxK/S+J7A9yNi5gjEVyseHzmYmZVUdt9Zz6+Vtu9LDAARcTf1Xasw\nM7MOVdcFaUnnAt8FBBwD/LLSqMzMrKXqOa20E/Ap4K2p6jrgnIh4uuLYBorHp5XMzEpq+lNZ242T\ng5lZeU2/5iDpPZJulfSIpE2pPN5YmGZm1s7quSB9FnAsMCkiXpZKXX05SFoiaaOkNbm6hZI2pIRz\nq6R35KbNl7RO0lpJh5VeGzMza4p6ksMG4I6IeH4Y7Z8PzO5XF8DiiNgvlf8AkDQDOJqsL+nZwDmS\nhvPsJxuCpB5p0oqsqKfV8bRSrW3Rv67K7bW17XErpYkrG3mNMnE2e52a2Z4/n22ijn5HDwBWAPOB\neamcXKLf0unAmtz4acC8GvPNBz6XG78COKDRflBdCtuvkg7pO7EMsC0W9Kt7CnZ+qorttfX15wVM\njkZeo8z72uzPQDPb8+ezulJ231lPg1cBFwN/n3bspwGnlQioVnJYD9wGnAdMSPVnA8fk5jsXOKLR\nFXTpv/26VmT/dJHK0oCuFa2Oq422xUPFugMq2V5bX//waPQ9KfO+Nvsz0Mz2/PmsrpTdd9Zzn8Mr\nI+LQOuar17eAL6XhfwAWAR8dYN6aP6WStDA32hsRvc0KzsxsNEiPPuoedgN1ZJuv0dgh53RyRw4D\nTQNOBU7NTbsCeHOj2c+lsP182D74tvBppRZ+pvz5rK6U3XfWcxPcE8DOwDNA39NYI+r/xdJ04PKI\n2DuNvzIifp+GTwL2j4j/lS5ILyPrhnQKcDXw2ugXoO9zaFx2ka9rXjb28KKIuLK1EbVOrW3Rvy77\nW8322vpaT0+CHYDt/jjc1yjzvjb7M9DM9vz5rEYlN8FJ6gL2IOtDGoCo46mskpYDBwOTgY1k1xu6\nyToMCuA3wMcjYmOafwFwPFm/ESfW+lA4OZiZldf05CDpY8BcYCqwiuzXS9dHxNsaCXS4nBzMzMqr\n4qmsJ5Kd6vltRBwCzAQeG2Z8ZmbWAepJDk9FxJOQPYQvIu4C/qzasMzMrJXq+SnrfZImApcCV0l6\nhOw+BTMzG6VKPZU1/W52PHBFRDxTVVBDxOBrDmZmJfmR3WZmVlDFBWkzM9vGODmYmVmBk4OZmRU4\nOZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFVSaHCQtkbRR0poa0+ZJ\nej71MtdXN1/SOklrJR1WZWxmZjawqo8czgdm96+UNA04FPhtrm4GcDQwIy1zjiQf2VhTSeqRJq3I\ninpaHU+zZes3bqU06SFp4spG1zFrb2Jqb1zD7Q38Gs1/T0b7e125iKi0ANOBNf3qfgDsQ9aHdFeq\nmw98LjfPFcABNdqLqmN2GZ0F6IHxm2FpZGX8ZqCn1XE1d/12fgomR24dnxruOqbt9dTWtiZH1n7z\ntllV78lof6+HuU2izPz1dPbTVJLmABsiYrX0oqfH7gbckBvfAEwZydhstOuaB4vHwrF9FWPh5HnA\nlS0Mqom65sGeY+AT5NZxzPDXsWseLB6Tawv49hi4u4nbrKr3ZLS/19Ub0eQgaWdgAdkppReqB1mk\nZmcTkhbmRnsjorfh4MzMRpHUOVv3cJcf6SOH15CdZrotHTVMBVZKejNwPzAtN+/UVFcQEQsrjdJG\nqYcXwdwDgbHZ+Nwn4fFFLQ2pqR5eBKsPglPGbK2b+/Tw1/HhRTD3ICC1dwqw+WnY3MRtVtV7Mtrf\n66GlL829feOSTiuzfOU9wUmaDlweEXvXmPYb4I0R8XC6IL0MmEV2Oulq4LXRL0D3BGeNyC5Mds3L\nxh5eFBGj6jRDtn4vPR3GvBqe/y08uqCRdczam3A6bPdqePq38P8aam/g12j+ezLa3+uy2qqbUEnL\ngYOBScCDwBcj4vzc9F8Db4qIh9P4AuB44FngxFpvppODmVl5bZUcquDkYGZWnvuQNjOzhjk5mJlZ\ngZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFTg5mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGT\ng5mZFTg5mJlZgZODmZkVODmYmVlBpclB0hJJGyWtydX9g6TbJK2S9DNJ03LT5ktaJ2mtpMOqjM3M\nzAZW9ZHD+cDsfnVfi4h9I+INwKXAaQCpD+mjgRlpmXMk+cjGrMkk9UiTVmRFPa2Op1W8HQa3fZWN\nR8R1kqb3q9uUGx0HPJSG5wDLI2ILsF7SPcAs4IYqYzTblmQ7wfGXwOKxWc3cAyW9v1Z/7aOZt8PQ\nKk0OA5H0j8BHgCfJEgDAbrw4EWwApoxwaGajXNe8bId4bF/FWDh5HrCN7RS9HYbSkuQQEZ8HPi/p\nVOAs4LiBZq1VKWlhbrQ3InqbGqCZWYeT1A10D3f5liSHnGXAv6fh+4FpuWlTU11BRCysNiyz0erh\nRTD3QKDvdMqT8PiilobUEqN/O6Qvzb1945JOK7O8Imp+OW+adM3h8ojYO43vERHr0vCngVkR8ZF0\nQXoZ2WmmKcDVwGujX4CSIiJUadBmo1h2vr1rXjb28KJt9Tz7trYdyu47K00OkpYDBwOTgY1kv0x6\nJ/BnwHPAvcAnI+LBNP8C4HjgWeDEWm+Wk4OZWXltlRyq4ORgZlZe2X2n7yMwM7MCJwczMytwcjAz\nswInBzMzK3ByMDOzAicHMzMrcHIwM7MCJwczMytwcjAzswInBzMzK3ByMDOzAicHMzMrcHIwM7MC\nJwczMytwcjAzs4JKk4OkJZI2SlqTq/u6pLsk3SbpYkm75KbNl7RO0lpJh1UZm5mZDazqI4fzgdn9\n6lYAr4uIfYG7gfkAqZvQo4EZaZlzJI26I5vU6XdH6uTYwfG3muPvLJXufCPiOuCRfnVXRcTzafRG\nYGoangMsj4gtEbEeuIesP+nRprvVATSgu9UBNKi71QE0qLvVATSou9UBNKi71QGMpFZ/Mz8e+Pc0\nvBuwITdtAzBlxCMyM7PWJQdJnweeiYhlg8zWWR1cm5mNEoqodv8raTpweUTsnav7a+BjwNsj4qlU\ndypARJyRxq8ATouIG/u154RhZjYMEaF6592+ykBqkTQb+AxwcF9iSC4DlklaTHY6aQ/gpv7Ll1k5\nMzMbnkqTg6TlwMHAZEn3AaeR/TppR+AqSQDXR8QJEXGnpIuAO4FngROi6sMaMzOrqfLTSmZm1nla\n/WulukiaJekmSbdKulnS/rlpHXHjnKRPp5v/bpf01Vx9R8QPIGmepOcldeXq2j7+0XDjpaTZKcZ1\nkj7X6ngGI2mapGsk3ZE+73NTfZekqyTdLWmFpAmtjnUwkl6S9jmXp/GOiV/SBEk/TJ/7OyW9uXT8\nEdH2BegFetLwO4Br0vAMYBWwAzCd7N6I7Vodb434DwGuAnZI4y/vpPhTrNOAK4DfAF2dFD9waF9c\nwBnAGR0W/0tSbNNTrKuAvVod1yDx7gq8IQ2PA34F7AV8Dfhsqv9c3/vQrgU4GfgecFka75j4gQuA\n49Pw9sAuZePviCMH4PdkKwcwAbg/DXfKjXOfBL4SEVsAIuIPqb5T4gdYDHy2X11HxB+df+PlLOCe\niFifPkPfJ4u9LUXEAxGxKg0/AdxF9iOT95LttEh/39eaCIcmaSrwTuBcoO9HMB0Rfzoy/suIWAIQ\nEc9GxGOUjL9TksOpwCJJvwO+TnrkBp1z49wewEGSbpDUK+lNqb4j4pc0B9gQEav7TeqI+PvpxBsv\npwD35cbbNc6C9FP2/ciS8isiYmOatBF4RYvCqsc/kf2q8vlcXafEvzvwB0nnS7pF0r9Keikl4x/x\nn7IORNJVZIej/X0emAvMjYhLJB0JLCE7VVBLS66wDxH/9sDEiDggXS+5CPjTAZpqx/jnA/nz8YP9\nnLjd4l8QEX3njDv1xst2jGlIksYBPwJOjIhN6deJAEREtOs9S5LeDTwYEbcO9Dyldo6fbH8zE/jb\niLhZ0llkX7BfUE/8bZMcImKgnT2SvhsRf5VGf0h2qAfZ6aVpuVmnsvWU04gaIv5PAhen+W5OF3Un\n0wHxS3o92TeR29I/91RgpaQ30wHx90k3Xr4TeHuuum3iH0L/OKfx4iOetiNpB7LEcGFEXJqqN0ra\nNSIekPRK4MHWRTiotwDvlfROYCdgvKQL6Zz4N5Ad6d+cxn9I9gXvgTLxd8pppXskHZyG30b2NFfI\nbpz7oKQdJe3OADfOtYFLyeJG0p7AjhHxEB0Qf0TcHhGviIjdI2J3sg/ezHR42vbxw4tuvJwTxRsv\n2z5+4JfAHpKmS9qR7OnFl7U4pgEp+xZxHnBnRJyVm3QZcGwaPpbs/6LtRMSCiJiWPu8fBP4zIj5C\n58T/AHBf2tcA/BVwB3A5JeJvmyOHIfwN8E1JY4An0zjROTfOLQGWKOvX4hngf0NHxZ/3QnwdFP/Z\ndPCNlxHxrKS/Ba4k++XSeRFxV4vDGsxbgQ8DqyXdmurmk/1S7CJJHwXWA0e1JrzS+j4TnRT/p4Hv\npS8T9wLHkX126o7fN8GZmVlBp5xWMjOzEeTkYGZmBU4OZmZW4ORgZmYFTg5mZlbg5GBmZgVODtax\nJO2S7j4fzrLr848eH2CegyX9xfCiM+tsTg7WySYCJwxz2Xpu8DmE7FEKbU2S/4+t6fyhsk52BvCa\n1CHLYklXS1opabWk9wJIeqmkn0paJWlNenDjCySNlfQf6a7RfP104OPASenJlgdJ+nWaNkHSc5IO\nTOPXSnpN6kzlUmWdCl0vae9aQUuaq6wjnNuUdaWLpHHpKZqrU/37U/2HUt0aSWfk2nhC0pmSVgF/\nIenDkm5M2+LbThjWqE55fIZZLZ8DXhcR+0l6CbBzevrnZOB6smfhzAbuj4h3AUh6WW75lwH/BlwQ\nEd/NNxwR6yV9G9gUEYvTsr+SNIPsiboryR7DfjMwNSLulXQ2sDIi3ifpEOA7ZI+rrhX39IjYIml8\nqvsC8EhE7JNea4Kk3cgS4EzgUWCFpDkR8WNgZ+CGiDhF0l6pzbdExHOSzgGOAS4c5nY185GDdbT8\no8O3A74i6TayXvd2k/QnwGrgUElnSDowIjbllv0xsKR/YhjkNa4DDgL+EvgKcCDwJrY+rO+tpB1y\nRFwDTFL22Or+VgPLJB0DPJfq3g58s2+GiHgU2J+s18M/RsRzZL2SHZRmeY7sqad9y74R+GV6ltHb\nyJ6kazaaKmpPAAABvElEQVRsTg42WhwDTCZ7Yux+ZI8j3iki1pF9e18DfFnSF9L8AfwXWbezAEg6\nIZ2WuSU90ri/a8l2zrPIOgyaAHSTJY0Xmum3jNLpolsl/STVvYssEcwEbk5HPbWWjX51Yuu1kqf6\nPSTwgojYL5U/j4gv1YjfrG5ODtbJNpGdGoKsG9kH02mVQ4BXA6Sd/FMR8T3gTF58mueLwCOSvgkQ\nEeeknevMiPh9v/YhO0J4C/BcRDwN3EZ2XeLaNP06siSFsk5i/hARmyLiuNTuu9PjrF8VEb1kHbDs\nQtbP8lXAp/peSFnn7zcBB0ualBLIB4Gf19gOPwM+IOnladkuSa+qfzOaFTk5WMeKiD8C/50ehb4v\n8CZJq4GPkPVbDLA3cGM63fJF4Mv92jgRGCvpqzVe4nLg/elb/1sj4hngd8ANafq1wLiIWJPGFwJv\nTKe2Tmfrs/PzXgJcmOK8BfhG6t/3y8DEdOF5FdCdnst/KnANsAr4ZV+vdrz40el3AX9Hdk3iNmAF\ntXvFM6ubH9ltZmYFPnIwM7MCJwczMytwcjAzswInBzMzK3ByMDOzAicHMzMrcHIwM7MCJwczMyv4\n/+Z7B9D7uIdIAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bmi = df['weight'] / (df['height'] ** 2) \n",
"filtered_group = df.ix[df['amount-chocolate'] > bmi * 6]\n",
"\n",
"filtered_group.plot(kind='scatter', x='task-one-score', y='amount-chocolate');\n",
"filtered_group.plot(kind='scatter', x='task-two-score',y='amount-chocolate');\n",
"\n",
"print(\"Pearson's r for task one is {}\".format(filtered_group['task-one-score'].corr( \n",
" filtered_group['amount-chocolate'])))\n",
"\n",
"print(\"Pearson's r for task two is {}\".format(filtered_group['task-two-score'].corr(\n",
" filtered_group['amount-chocolate'])))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}